MIXED MODE UNIVERSAL FILTER

2013 ◽  
Vol 22 (01) ◽  
pp. 1250064 ◽  
Author(s):  
NEETA PANDEY ◽  
SAJAL K. PAUL

The configuration with electronic tunable characteristics that can work in mixed mode may be useful from IC realization viewpoint and application adaptability. This paper proposes an electronically tunable mixed mode universal filter based on multiple output current controlled current conveyor (MOCCCII) and this single topology without any alteration can be used in all four modes i.e., voltage (VM), current (CM), transimpedance (TIM) and transadmittance (TAM). The architecture uses four MOCCCIIs and two grounded capacitors; and can realize universal filter functions — low pass (LP), band pass (BP), high pass (HP), notch (NF) and all pass (AP) for all four modes. Moreover the input impedance is high and output impedance is low for voltage signal and vice-versa for current signal, hence the proposed topology is suitable for cascading for all four modes. The workability of the proposed circuit has been verified via SPICE simulations using AMS 0.35 μm CMOS technology.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mourina Ghosh ◽  
Sajal K. Paul ◽  
Rajiv Kumar Ranjan ◽  
Ashish Ranjan

This paper proposes a multi-input single-output (MISO) third order voltage mode (VM) universal filter using only one operational transresistance amplifier (OTRA). The proposed circuit realizes low-pass, high-pass, all-pass, band-pass, and notch responses from the same topology. The PSPICE Simulation results using 0.5 μm CMOS technology agree well with the theoretical design.


2019 ◽  
Vol 28 (09) ◽  
pp. 1950143 ◽  
Author(s):  
Praveen Kumar ◽  
Neeta Pandey ◽  
Sajal K. Paul

This paper presents resistorless realization of inverse filters using voltage differencing transconductance amplifier (VDTA). First, four topologies are proposed which provide inverse low-pass, high-pass, band-pass, and band-reject responses. Subsequently, a unified inverse filter is also derived by incorporating two switches in the combination of proposed inverse low-pass and inverse band-pass topologies. This topology is capable of providing inverse low-pass, inverse high-pass, inverse band-pass, and inverse band-reject responses by appropriate switch settings. The proposed inverse filter structures are electronically tunable and use only grounded capacitors. The behavior of the proposed filters is also investigated for nonidealities. To verify the functionality of the proposed inverse filter circuits, SPICE simulation is carried out using 0.18-[Formula: see text]m CMOS technology parameters from TSMC. The effect of deviation in the active and passive component values on angular frequency is tested through Monte Carlo simulation.


2019 ◽  
Vol 28 (11) ◽  
pp. 1950181 ◽  
Author(s):  
Tajinder Singh Arora ◽  
Bhargavi Rohil ◽  
Soumya Gupta

This paper proposes a current mode universal filter circuit, employing two active elements along with four grounded passive components only. The derived circuit realizes all five filtering responses, i.e., low pass (LP), band pass (BP), high pass (HP), band reject (BR) and all pass (AP), simultaneously from high-impedance ports along with the input being fed to low-impedance port, thus making it a fully cascadable filter. In addition, the designed circuit exhibits independent tunability of its quality factor. With the idea of making the proposed filter fully integrable, a resistor-less approach of the configuration has also been discussed. By making slight modifications in the filter configuration, a current mode single-resistance-controlled quadrature oscillator circuit has also been derived. The ideal, nonideal, sensitivity and parasitic analysis have been conducted for the designed configurations. The functionality of the proposed structures is verified by PSPICE simulations using 0.18[Formula: see text][Formula: see text]m CMOS technology. The designs have also been verified using PSPICE macro-model of the commercially available IC, i.e., OPA860.


2005 ◽  
Vol 14 (01) ◽  
pp. 159-164 ◽  
Author(s):  
SUDHANSHU MAHESHWARI ◽  
IQBAL A. KHAN

A novel voltage-mode universal filter employing only two current differencing buffered amplifiers (CDBAs) is proposed. The filter uses four inputs and single output to realize six responses, viz. low-pass, high-pass, inverting band-pass, noninverting band-pass, band-elimination, and all-pass through input selection with independent pole-Q control. Computer simulation results using SPICE are also given to verify the theory.


2011 ◽  
Vol 20 (03) ◽  
pp. 549-555 ◽  
Author(s):  
A. K. SINGH ◽  
R. SENANI ◽  
D. R. BHASKAR ◽  
R. K. SHARMA

A number of configurations for realizing voltage-mode (VM) biquads using op-amps and OTAs have been presented in the literature, however, none of these provide the following desirable properties simultaneously: (i) realizability of all the five standard filters (namely; low pass, high pass, band pass, band stop and all pass), (ii) tunability of all the three filter parameters (namely; ω0, bandwidth or Q0 and gain) and (iii) not requiring any realization condition in any of the five filter responses. This paper presents a new configuration which does possess all the above mentioned desirable properties simultaneously while using only two internally-compensated type op-amps and a reasonable number of OTAs. The workability of the new configuration has been demonstrated by SPICE simulations based upon CMOS Op-amp and CMOS OTAs.


This paper presents a voltage-mode(VM) tunable multifunction inverse filter configuration employing current differencing buffered amplifiers (CDBA). The presented structure utilizes two CDBAs, two/three capacitors and four/five resistors to realize inverse low pass filter (ILPF), inverse high pass filter (IHPF), inverse band pass filter (IBPF), and inverse band reject filter(IBRF) from the same circuit topology by suitable selection(s) of the branch admittances(s). PSPICE simulations have been performed with 0.18µm TSMC CMOS technology to validate the theory. Some sample experimental results have also been provided using off-the-shelf IC AD844 based CDBA.


2012 ◽  
Vol 21 (01) ◽  
pp. 1250013 ◽  
Author(s):  
MEHMET SAGBAS ◽  
MUHAMMET KOKSAL

In this paper, a general electronically tunable resistorless biquad, which realizes current ratio transfer function using current backward transconductance amplifiers is proposed. The biquad contains only two active components and two grounded capacitors, which make it convenient for production by the integrated circuit technology. The proposed biquad realizes all of the basic second order filter characteristics: low pass, high pass, band pass, band reject, and finally all pass. It is convenient for cascading with other similar biquads as well as with any two-port circuit with low impedance input to achieve higher order filter characteristics. The simulations that are performed using PSPICE simulator exhibit satisfactory results coherent with the theory.


Author(s):  
Montree Kumngern

This paper presents a new current-mode universal filter with one-input three-output employing three translinear current conveyors and two grounded capacitors. The proposed filter provides low-pass, band-pass, high-pass current response with high output impedance output which can be directly connected for current-mode circuit. The band-pass and all-pass filters can also be obtained. The parameters wo and Q can be controlled separately and electronically by the bias currents of current conveyors. For realizing all filtering functions, no passive and active matching conditions are required. The active and passive sensitivities are low. The characteristic of the proposed circuit can be confirmed by SPICE simulations.


Author(s):  
Rashmika Rai ◽  
◽  
S Indu

The study presents a universal filter and Oscillator obtain by applying only single input. All the passive components used are grounded which is suitable for integrated circuit implementation. In the circuit by applying for single input simultaneously low pass, High Pass, Band Pass, All Pass, and Notch filter is obtained by using two blocks of Differential Difference current conveyor transconductance amplifier.


Author(s):  
Danupat Duangmalai ◽  
Peerawut Suwanjan

In this research contribution, the electronically tunable first-order universal filter employing a single voltage differencing differential input buffered amplifier (VD-DIBA) (constructed from two commercially available integrated circuit (IC): the operational transconductance amplifier, IC number LT1228, and the differential voltage input buffer, IC number AD830), one capacitor and two resistors. The features of the designed first order universal filter are as follows. Three voltage-mode first-order functions, low-pass (LP), all-pass (AP) and high-pass (HP) responses are given. The natural frequency (𝜔0) of the presented configuration can be electronically adjusted by setting the DC bias current. Moreover, the voltage gain of the LP and HP filters can be controllable. The phase responses of an AP configuration can be varied from 00 to −1800 and 1800 to 00. The power supply voltages were set at ±5 𝑉. Verification of the theoretically described performances of the introduced electronically tunable universal filter was proved by the PSpice simulation and experiment.


Sign in / Sign up

Export Citation Format

Share Document