scholarly journals Representing Virtual Transparent Objects on Optical See-Through Head-Mounted Displays Based on Human Vision

2021 ◽  
Vol 11 (2) ◽  
pp. 495
Author(s):  
Yuto Kimura ◽  
Asako Kimura ◽  
Fumihisa Shibata

In this study, we propose two methods for representing virtual transparent objects convincingly on an optical see-through head-mounted display without the use of an attenuation function or shielding environmental light. The first method represents the shadows and caustics of virtual transparent objects as illusionary images. Using this illusion-based approach, shadows can be represented without blocking the luminance produced by the real environment, and caustics are represented by adding the luminance of the environment to the produced shadow. In the second method, the visual effects that occur in each individual image of a transparent object are represented as surface, refraction, and reflection images by considering human binocular movement. The visual effects produced by this method reflect the disparities among the vergence and defocus of accommodation associated with the respective images. When reproducing the disparity, each parallax image is calculated in real time using a polygon-based method, whereas when reproducing the defocus, image processing is applied to blur each image and consider the user’s gaze image. To validate these approaches, we conducted experiments to evaluate the realism of the virtual transparent objects produced by each method. The results revealed that both methods produced virtual transparent objects with improved realism.

2013 ◽  
Vol 347-350 ◽  
pp. 3232-3236
Author(s):  
Zheng Bao Zhang ◽  
Chao Jia

Lots of anti-RST attacks watermarking algorithms have been proposed, but few solutions for local geometric attacks, in this paper it proposed a new algorithm combined with the the Wavelet Moment for an anti-geometric attacks. Since wavelet moment was proposed, it is widely used in the field of computer vision, image processing, but the large amount of computation must be improved to be applied to digital watermarking technology so that it can adapt to the real-time detection of digital watermarking. By image rotation, scaling, translation, shear, local distortions, filtering attack operations and so on, these attacks can be seen that the algorithm has good robustness, and the efficiency of watermark detection is relatively high. The experiments show that the algorithm is robustness, greatly accelerate the speed of operation, to unify the robust and efficient.


2017 ◽  
Vol 29 (05) ◽  
pp. 1750036
Author(s):  
Boon Yew Teoh ◽  
Misni Misran ◽  
Zhi Zhang Tan ◽  
Poh Foong Lee

Electrophoretic mobility (EPM) measurement on biological particles in fluids is well established. The current method in measuring EPM is using laser which the target particles are not visible. Additional morphology information is critical for the EPM measurement. Image processing is a promising method to obtain the EPM together with the morphology information. In this study, a setup of micro electrophoresis system with a compact CCD microscope was constructed. This setup was equipped with image processing method for capturing the images of the moving particles in an electric field. With the image processing method (Horn–Schunck method), the images captured were processed in real time to obtain the EPM of the particle. Velocity of the particles was then measured and the particles’ EPM was obtained. With the captured images of the particles in real time, the system can present the image of the targeted particle together with the EPM value. The setup of this prototype was calibrated with discrete particles (Polystyrene microsphere size of 10[Formula: see text][Formula: see text]m[Formula: see text] 5%) and with a magnification value of 125[Formula: see text]X. This system is suitable for the surface charge measurement of discrete particle with size in between 4[Formula: see text][Formula: see text]m and 20[Formula: see text][Formula: see text]m. Comparison of commercialized device with our laboratory setup for calibration on EPM of polystyrene beads had a variance of solely 13%. Measurement on yeast cells, normal (hFob 1.19) and cancer bone cells (U2OS) indicated that the EPM of yeast became highly negative in the pH value of 4.5 and 6.5. The negative EPM of the cancer cell is slightly larger than that of the normal cell for pH ranging from 4.4 to 5.0. In conclusion, the real-time EPM measurement set up for this study is able to display the real-time images of the moving particles in fluid suspension during measurement.


2013 ◽  
Vol 427-429 ◽  
pp. 1658-1661 ◽  
Author(s):  
Xiao Jing Guo ◽  
Xue You Yang ◽  
Zhi Jing Yu

Depending on image processing system, a major sub-system in foreign object debris (FOD) detecting system on the runway, FOD image will be observed efficiently and rapidly with few economy costs and highly accuracy and reliability so as to ensure the passengers safety. The thesis analyses the characteristics and principles of wavelet transformation and applies the theory in image processing under poor visual background for identifying the FODs shape and mark characteristic point on the runway by programming in MATLAB. Besides that, it brings about profound significance for realizing the real-time detecting on the FOD and testing the feasibility and efficiency.


2014 ◽  
Vol 519-520 ◽  
pp. 719-723
Author(s):  
Guang Wang

A data parallel implementation of geometric operations is proposed and conclusions are proved. It shows that the computation complexity of data parallel implementation scheme presented in this paper is Ο(M+N). It can be used to improve the efficiency of geometric operations and can easily meet the real time requirements of the digital image processing.


2020 ◽  
Vol 10 (7) ◽  
pp. 2248
Author(s):  
Syed Hammad Hussain Shah ◽  
Kyungjin Han ◽  
Jong Weon Lee

We propose a novel authoring and viewing system for generating multiple experiences with a single 360° video and efficiently transferring these experiences to the user. An immersive video contains much more interesting information within the 360° environment than normal videos. There can be multiple interesting areas within a 360° frame at the same time. Due to the narrow field of view in virtual reality head-mounted displays, a user can only view a limited area of a 360° video. Hence, our system is aimed at generating multiple experiences based on interesting information in different regions of a 360° video and efficient transferring of these experiences to prospective users. The proposed system generates experiences by using two approaches: (1) Recording of the user’s experience when the user watches a panoramic video using a virtual reality head-mounted display, and (2) tracking of an arbitrary interesting object in a 360° video selected by the user. For tracking of an arbitrary interesting object, we have developed a pipeline around an existing simple object tracker to adapt it for 360° videos. This tracking algorithm was performed in real time on a CPU with high precision. Moreover, to the best of our knowledge, there is no such existing system that can generate a variety of different experiences from a single 360° video and enable the viewer to watch one 360° visual content from various interesting perspectives in immersive virtual reality. Furthermore, we have provided an adaptive focus assistance technique for efficient transferring of the generated experiences to other users in virtual reality. In this study, technical evaluation of the system along with a detailed user study has been performed to assess the system’s application. Findings from evaluation of the system showed that a single 360° multimedia content has the capability of generating multiple experiences and transfers among users. Moreover, sharing of the 360° experiences enabled viewers to watch multiple interesting contents with less effort.


Sign in / Sign up

Export Citation Format

Share Document