scholarly journals Structural Health Monitoring of 2D Plane Structures

2021 ◽  
Vol 11 (5) ◽  
pp. 2000
Author(s):  
Behnam Mobaraki ◽  
Haiying Ma ◽  
Jose Antonio Lozano Galant ◽  
Jose Turmo

This paper presents the application of the observability technique for the structural system identification of 2D models. Unlike previous applications of this method, unknown variables appear both in the numerator and the denominator of the stiffness matrix system, making the problem non-linear and impossible to solve. To fill this gap, new changes in variables are proposed to linearize the system of equations. In addition, to illustrate the application of the proposed procedure into the observability method, a detailed mathematical analysis is presented. Finally, to validate the applicability of the method, the mechanical properties of a state-of-the-art plate are numerically determined.

1967 ◽  
Vol 31 ◽  
pp. 313-317 ◽  
Author(s):  
C. C. Lin ◽  
F. H. Shu

Density waves in the nature of those proposed by B. Lindblad are described by detailed mathematical analysis of collective modes in a disk-like stellar system. The treatment is centered around a hypothesis of quasi-stationary spiral structure. We examine (a) the mechanism for the maintenance of this spiral pattern, and (b) its consequences on the observable features of the galaxy.


2017 ◽  
Vol 109 (7) ◽  
pp. 3254-3261
Author(s):  
Jun LEI ◽  
Dong XU ◽  
José Antonio Lozano-Galant ◽  
María Nogal ◽  
José Turmo

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 864 ◽  
Author(s):  
Ju Wang ◽  
Nicolai Spicher ◽  
Joana M. Warnecke ◽  
Mostafa Haghi ◽  
Jonas Schwartze ◽  
...  

With the advances in sensor technology, big data, and artificial intelligence, unobtrusive in-home health monitoring has been a research focus for decades. Following up our research on smart vehicles, within the framework of unobtrusive health monitoring in private spaces, this work attempts to provide a guide to current sensor technology for unobtrusive in-home monitoring by a literature review of the state of the art and to answer, in particular, the questions: (1) What types of sensors can be used for unobtrusive in-home health data acquisition? (2) Where should the sensors be placed? (3) What data can be monitored in a smart home? (4) How can the obtained data support the monitoring functions? We conducted a retrospective literature review and summarized the state-of-the-art research on leveraging sensor technology for unobtrusive in-home health monitoring. For structured analysis, we developed a four-category terminology (location, unobtrusive sensor, data, and monitoring functions). We acquired 912 unique articles from four relevant databases (ACM Digital Lib, IEEE Xplore, PubMed, and Scopus) and screened them for relevance, resulting in n=55 papers analyzed in a structured manner using the terminology. The results delivered 25 types of sensors (motion sensor, contact sensor, pressure sensor, electrical current sensor, etc.) that can be deployed within rooms, static facilities, or electric appliances in an ambient way. While behavioral data (e.g., presence (n=38), time spent on activities (n=18)) can be acquired effortlessly, physiological parameters (e.g., heart rate, respiratory rate) are measurable on a limited scale (n=5). Behavioral data contribute to functional monitoring. Emergency monitoring can be built up on behavioral and environmental data. Acquired physiological parameters allow reasonable monitoring of physiological functions to a limited extent. Environmental data and behavioral data also detect safety and security abnormalities. Social interaction monitoring relies mainly on direct monitoring of tools of communication (smartphone; computer). In summary, convincing proof of a clear effect of these monitoring functions on clinical outcome with a large sample size and long-term monitoring is still lacking.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2778 ◽  
Author(s):  
Mohsen Azimi ◽  
Armin Eslamlou ◽  
Gokhan Pekcan

Data-driven methods in structural health monitoring (SHM) is gaining popularity due to recent technological advancements in sensors, as well as high-speed internet and cloud-based computation. Since the introduction of deep learning (DL) in civil engineering, particularly in SHM, this emerging and promising tool has attracted significant attention among researchers. The main goal of this paper is to review the latest publications in SHM using emerging DL-based methods and provide readers with an overall understanding of various SHM applications. After a brief introduction, an overview of various DL methods (e.g., deep neural networks, transfer learning, etc.) is presented. The procedure and application of vibration-based, vision-based monitoring, along with some of the recent technologies used for SHM, such as sensors, unmanned aerial vehicles (UAVs), etc. are discussed. The review concludes with prospects and potential limitations of DL-based methods in SHM applications.


2015 ◽  
Vol 752-753 ◽  
pp. 1029-1034
Author(s):  
Asnizah Sahekhaini ◽  
Pauziah Muhamad ◽  
Masayuki Kohiyama ◽  
Aminuddin Abu ◽  
Lee Kee Quen ◽  
...  

This paper presents a wavelet-based method of identification modal parameter and damage detection in a free vibration response. An algorithm for modal parameter identification and damage detection is purposed and complex Morlet wavelet is chosen as an analysis wavelet function. This paper only focuses on identification of natural frequencies of the structural system. The method utilizes both undamaged and damage experiment data of free vibration response of the truss structure system. Wavelet scalogram is utilizes for damage detection. The change of energy components for undamaged and damage structure is investigated from the plot of wavelet scalogram which corresponded to the detection of damage.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 571-599
Author(s):  
Ricardo Donate ◽  
Mario Monzón ◽  
María Elena Alemán-Domínguez

AbstractPolylactic acid (PLA) is one of the most commonly used materials in the biomedical sector because of its processability, mechanical properties and biocompatibility. Among the different techniques that are feasible to process this biomaterial, additive manufacturing (AM) has gained attention recently, as it provides the possibility of tuning the design of the structures. This flexibility in the design stage allows the customization of the parts in order to optimize their use in the tissue engineering field. In the recent years, the application of PLA for the manufacture of bone scaffolds has been especially relevant, since numerous studies have proven the potential of this biomaterial for bone regeneration. This review contains a description of the specific requirements in the regeneration of bone and how the state of the art have tried to address them with different strategies to develop PLA-based scaffolds by AM techniques and with improved biofunctionality.


Sign in / Sign up

Export Citation Format

Share Document