scholarly journals Post Quantum Cryptographic Keys Generated with Physical Unclonable Functions

2021 ◽  
Vol 11 (6) ◽  
pp. 2801
Author(s):  
Bertrand Cambou ◽  
Michael Gowanlock ◽  
Bahattin Yildiz ◽  
Dina Ghanaimiandoab ◽  
Kaitlyn Lee ◽  
...  

Lattice and code cryptography can replace existing schemes such as elliptic curve cryptography because of their resistance to quantum computers. In support of public key infrastructures, the distribution, validation and storage of the cryptographic keys is then more complex for handling longer keys. This paper describes practical ways to generate keys from physical unclonable functions, for both lattice and code-based cryptography. Handshakes between client devices containing the physical unclonable functions (PUFs) and a server are used to select sets of addressable positions in the PUFs, from which streams of bits called seeds are generated on demand. The public and private cryptographic key pairs are computed from these seeds together with additional streams of random numbers. The method allows the server to independently validate the public key generated by the PUF, and act as a certificate authority in the network. Technologies such as high performance computing, and graphic processing units can further enhance security by preventing attackers from making this independent validation when only equipped with less powerful computers.

Author(s):  
Bertrand Cambou ◽  
Michael Gowanlock ◽  
Bahattin Yildiz ◽  
Dina Ghanaimiandoab ◽  
Kaitlyn Lee ◽  
...  

Lattice and code cryptography can replace existing schemes such as Elliptic Curve Cryptography because of their resistance to quantum computers. In support of public key infrastructures, the distribution, validation and storage of the cryptographic keys is then more complex to handle longer keys. This paper describes practical ways to generate keys from physical unclonable functions, for both lattice and code based cryptography. Handshakes between client devices containing the PUFs and a server are used to select sets of addressable positions in the PUFs, from which streams of bits called seeds are generated on demand. The public and private cryptographic key pairs are computed from these seeds together with additional streams of random numbers. The method allows the server to independently validate the public key generated by the PUF, and act as a certificate authority in the network. Technologies such as High performance computing, and graphic processing units can further enhance security by preventing attackers to make this independent validation when only equipped with less powerful computers.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2060
Author(s):  
Aleksandr Agafonov ◽  
Kimmo Mattila ◽  
Cuong Duong Tuan ◽  
Lars Tiede ◽  
Inge Alexander Raknes ◽  
...  

META-pipe is a complete service for the analysis of marine metagenomic data. It provides assembly of high-throughput sequence data, functional annotation of predicted genes, and taxonomic profiling. The functional annotation is computationally demanding and is therefore currently run on a high-performance computing cluster in Norway. However, additional compute resources are necessary to open the service to all ELIXIR users. We describe our approach for setting up and executing the functional analysis of META-pipe on additional academic and commercial clouds. Our goal is to provide a powerful analysis service that is easy to use and to maintain. Our design therefore uses a distributed architecture where we combine central servers with multiple distributed backends that execute the computationally intensive jobs. We believe our experiences developing and operating META-pipe provides a useful model for others that plan to provide a portal based data analysis service in ELIXIR and other organizations with geographically distributed compute and storage resources.


Author(s):  
Shadi R. Masadeh ◽  
Walid K. Salameh

This chapter presents a keyless self-encrypting/decrypting system to be used in various communications systems. In the world of vast communications systems, data flow through various kinds of media, including free air. Thus the information transmitted is free to anyone who can peer it, which means that there should be a guarding mechanism so the information is transmitted securely over the medium from the sender to the intended receiver, who is supposed to get it in the first place and deter the others from getting the information sent. Many encryption systems have been devised for this purpose, but most of them are built around Public Key Infrastructure (PKI) wherein public key cryptography, a public and private key, is created simultaneously using the same algorithm (a popular one is known as RSA) by a certificate authority (CA). The private key is given only to the requesting party, and the public key is made publicly available (as part of a digital certificate) in a directory that all parties can access. The private key is never shared with anyone or sent across the medium. All of the commonly used encryption systems exchange keys that need to be generated using complex mathematical operations that take noticeable time, which is sometimes done once, and exchanged openly over unsecured medium. We are proposing an expandable keyless self-encrypting/decrypting system, which does not require the use of keys in order o minimize the chances of breaching data exchange security and enhance the data security of everyday communications devices that are otherwise insecured.


Author(s):  
Jarrod M. Rifkind ◽  
Seymour E. Goodman

Information technology has drastically changed the ways in which individuals are accounted for and monitored in societies. Over the past two decades, the United States and other countries worldwide have seen a tremendous increase in the number of individuals with access to the Internet. Data collected by the World Bank shows that 17.5 of every 100 people in the world had access to the Internet in 2006, and this number increased to 23.2 in 2008, 29.5 in 2010, and 32.8 in 2011 (World Bank 2012). According to the latest Cisco traffic report, Internet traffic exceeded 30 exabytes (1018 bytes) per month in 2011 and is expected to reach a zettabyte (1021 bytes) per month by 2015 (Cisco Systems 2011). Activities on the Web are no longer limited to seemingly noncontroversial practices like e-mail. The sheer growth of the Internet as a medium for communication and information sharing as well as the development of large, high-performance data centers have made it easier and less expensive for companies and governments to aggregate large amounts of data generated by individuals. Today, many people’s personal lives can be pieced together relatively easily according to their search histories and the information that they provide on social networking websites such as Facebook and Twitter. Therefore, technological breakthroughs associated with computing raise important questions regarding information security and the role of privacy in society. As individuals begin using the Internet for e-commerce, e-government, and a variety of other services, data about their activities has been collected and stored by entities in both the public and private sectors. For the private sector, consumer activities on the Internet provide lucrative information about user spending habits that can then be used to generate targeted advertisements. Companies have developed business models that rely on the sale of such information to third-party entities, whether they are other companies or the federal government. As for the public sector, data collection occurs through any exchange a government may have with its citizens.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 843 ◽  
Author(s):  
Pei-Yen Wan ◽  
Teh-Lu Liao ◽  
Jun-Juh Yan ◽  
Hsin-Han Tsai

This paper is concerned with the design of an improved El-Gamal cryptosystem based on chaos synchronization. The El-Gamal cryptosystem is an asymmetric encryption algorithm that must use the public and private keys, respectively, in the encryption and decryption processes. However, in our design, the public key does not have to appear in the public channel. Therefore, this proposed improved El-Gamal cryptosystem becomes a symmetric-like encryption algorithm. First, a discrete sliding mode controller is proposed to ensure the synchronization of master and slave chaotic systems; next, a novel improved El-Gamal cryptosystem is presented. In the traditional El-Gamal cryptosystem, the public key is static and needs to be open which provides an opportunity to attack. However, in this improved design, due to the chaos synchronization, the public key becomes dynamic and does not appear in public channels. As a result, drawbacks of long cipher text and time-consuming calculation in the traditional El-Gamal cryptosystem are all removed. Finally, several performance tests and comparisons have shown the efficiency and security of the proposed algorithm.


Author(s):  
Chandra Sekhar Patro

Employees' play a key role in the existence and growth of any organisation, therefore their welfare is essential. During the past few years, both public sector and private sector organisations have been contributing towards the employee's benefits and also increase their efficiency. Employees' welfare facilities include housing facilities, free medical facilities, retirement benefits, children and adult educational benefits, welfare measures for the employee's families, loan facilities, etc. If the organisations do not bother about the employees benefit, but expect efficient and high performance from them, it is a mere waste. So there is utmost need for the employee's welfare in any type of organisation. Organizations have to provide welfare facilities to their employees to keep their motivation levels high. A comparative study was undertaken to know the satisfaction level of the employees on the enforceability of various welfare measures in both the public and private sector organizations. The study also throws light on impact of welfare measures on the employees' performance.


2017 ◽  
Author(s):  
Andysah Putera Utama Siahaan

RSA always uses two big prime numbers to deal with the encryption process. The public key is obtained from the multiplication of both figures. However, we can break it by doing factorization to split the public key into two individual numbers. Cryptanalysis can perform the public key crack by knowing its value. The private key will be soon constructed after the two numbers retrieved. The public key is noted as “N”, while "N = P * Q". This technique is unclassified anymore to solve the RSA public and private key. If it is successfully factored into p and q then ɸ (N) = (P-1) * (Q-1) can be further calculated. By having the public key e, the private key d will be solved. Factorization method is the best way to do the demolition. This study concerns to numbers factorization. GCD calculation will produce the encryption "E" and decryption "D" keys, but it depends on the computer speed.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1535
Author(s):  
Jason Chia ◽  
Swee-Huay Heng ◽  
Ji-Jian Chin ◽  
Syh-Yuan Tan ◽  
Wei-Chuen Yau

Public key infrastructure (PKI) plays a fundamental role in securing the infrastructure of the Internet through the certification of public keys used in asymmetric encryption. It is an industry standard used by both public and private entities that costs a lot of resources to maintain and secure. On the other hand, identity-based cryptography removes the need for certificates, which in turn lowers the cost. In this work, we present a practical implementation of a hybrid PKI that can issue new identity-based cryptographic keys for authentication purposes while bootstrapping trust with existing certificate authorities. We provide a set of utilities to generate and use such keys within the context of an identity-based environment as well as an external environment (i.e., without root trust to the private key generator). Key revocation is solved through our custom naming design which currently supports a few scenarios (e.g., expire by date, expire by year and valid for year). Our implementation offers a high degree of interoperability by incorporating X.509 standards into identity-based cryptography (IBC) compared to existing works on hybrid PKI–IBC systems. The utilities provided are minimalist and can be integrated with existing tools such as the Enterprise Java Bean Certified Authority (EJBCA).


Author(s):  
Omar A. Mures ◽  
Alberto Jaspe ◽  
Emilio J. Padrón ◽  
Juan R. Rabuñal

Recent advances in acquisition technologies, such as LIDAR and photogrammetry, have brought back to popularity 3D point clouds in a lot of fields of application of Computer Graphics: Civil Engineering, Architecture, Topography, etc. These acquisition systems are producing an unprecedented amount of geometric data with additional attached information, resulting in huge datasets whose processing and storage requirements exceed usual approaches, presenting new challenges that can be addressed from a Big Data perspective by applying High Performance Computing and Computer Graphics techniques. This chapter presents a series of applications built on top of Point Cloud Manager (PCM), a middleware that provides an abstraction for point clouds with arbitrary attached data and makes it easy to perform out-of-core operations on them on commodity CPUs and GPUs. Hence, different kinds of real world applications are tackled, showing both real-time and offline examples, and render-oriented and computation-related operations as well.


Sign in / Sign up

Export Citation Format

Share Document