scholarly journals Seismic Data Interpretation and Petrophysical Analysis of Kabirwala Area Tola (01) Well, Central Indus Basin, Pakistan

2021 ◽  
Vol 11 (7) ◽  
pp. 2911
Author(s):  
Naveed Ahmad ◽  
Sikandar Khan ◽  
Abdullatif Al-Shuhail

Well logging is a significant procedure that assists geophysicists and geologists with making predictions regarding boreholes and efficiently utilizing and optimizing the drilling process. The current study area is positioned in the Punjab Territory of Pakistan, and the geographic coordinates are 30020′10 N and 70043′30 E. The objective of the current research work was to interpret the subsurface structure and reservoir characteristics of the Kabirwala area Tola (01) well, which is located in the Punjab platform, Central Indus Basin, utilizing 2D seismic and well log data. Formation evaluation for hydrocarbon potential using the reservoir properties is performed in this study. For the marked zone of interest, the study also focuses on evaluating the average water saturation, average total porosity, average effective porosity, and net pay thickness. The results of the study show a spotted horizon stone with respect to time and depth as follows: Dunghan formation, 0.9 s and 1080.46 m; Cretaceous Samana Suk formation, 0.96 s and 1174.05 m; Datta formation, 1.08 s and 1400 m; and Warcha formation, 1.24 s and 1810 m. Based on the interpretation of well logs, the purpose of petrophysical analysis was to identify hydrocarbon-bearing zones in the study area. Gamma ray, spontaneous potential, resistivity, neutron, and density log data were utilized. The high zone present in the east–west part of the contour maps may be a possible location of hydrocarbon entrapment, which is further confirmed by the presence of the Tola-01 well.

2021 ◽  
Vol 11 (6) ◽  
pp. 2647
Author(s):  
Naveed Ahmad ◽  
Sikandar Khan ◽  
Abdullatif Al-Shuhail

Well logging is a significant procedure that assists geophysicists and geologists with making predictions regarding boreholes and efficiently utilizing and optimizing the drilling process. The current study area is positioned in the Punjab Territory of Pakistan, and the geographic coordinates are 30020′10 N and 70043′30 E. The objective of the current research work was to interpret the subsurface structure and reservoir characteristics of the Kabirwala area Tola (01) well, which is located in the Punjab platform, Central Indus Basin, utilizing 2D seismic and well log data. Formation evaluation for hydrocarbon potential using the reservoir properties is performed in this study. For the marked zone of interest, the study also focuses on evaluating the average water saturation, average total porosity, average effective porosity, and net pay thickness. The results of the study show a spotted horizon stone with respect to time and depth as follows: Dunghan formation, 0.9 sec and 1080.46 m; Cretaceous Samana Suk formation, 0.96 sec and 1174.05 m; Datta formation, 1.08 sec and 1400 m; and Warcha formation, 1.24 sec and 1810 m. Based on the interpretation of well logs, the purpose of petrophysical analysis was to identify hydrocarbon-bearing zones in the study area. Gamma ray, spontaneous potential, resistivity, neutron, and density log data were utilized. The high zone present in the east–west part of the contour maps may be a possible location of hydrocarbon entrapment, which is further confirmed by the presence of the Tola-01 well.


2017 ◽  
Vol 5 (1) ◽  
pp. 37 ◽  
Author(s):  
Inyang Namdie ◽  
Idara Akpabio ◽  
Agbasi Okechukwu .E.

Bonga oil field is located 120km (75mi) southeast of the Niger Delta, Nigeria. It is a subsea type development located about 3500ft water depth and has produced over 330 mmstb of hydrocarbon till date with over 16 oil producing and water injection wells. The producing formation is the Middle to Late Miocene unconsolidated turbidite sandstones with lateral and vertical homogeneities in reservoir properties. This work, analysis the petrophysical properties of the reservoir units for the purpose of modeling the effect of shale content on permeability in the reservoir. Turbidite sandstones are identified by gamma-ray log signatures as intervals with 26-50 API, while sonic, neutron, resistivity, caliper and other log data are applied to estimate volume of shale ranging between 0.972 v/v for shale intervals and 0.0549 v/v for turbidite sands, water saturation of 0.34 v/v average in most sand intervals, porosity range from 0.010 for shale intervals to 0.49 v/v for clean sands and permeability values for the send interval 11.46 to2634mD, for intervals between 7100 to 9100 ft., Data were analyzed using the Interactive Petrophysical software that splits the whole curve into sand and shale zones and estimates among other petrophysical parameters the shale contents of the prospective zones. While Seismic data revealed reservoir thickness ranging from 25ft to over 140ft well log data within the five wells have identified sands of similar thickness and estimated average permeability of700mD. Within the sand units across the five wells, cross plots of estimated porosity, volume of shale and permeability values reveal strong dependence of permeability on shale volume and a general decrease in permeability in intervals with shale volume. It is concluded that sand units with high shale contents that are from0.500 to0.900v/v will not provide good quality reservoir in the field.


2021 ◽  
pp. 4702-4711
Author(s):  
Asmaa Talal Fadel ◽  
Madhat E. Nasser

     Reservoir characterization requires reliable knowledge of certain fundamental properties of the reservoir. These properties can be defined or at least inferred by log measurements, including porosity, resistivity, volume of shale, lithology, water saturation, and permeability of oil or gas. The current research is an estimate of the reservoir characteristics of Mishrif Formation in Amara Oil Field, particularly well AM-1, in south eastern Iraq. Mishrif Formation (Cenomanin-Early Touronin) is considered as the prime reservoir in Amara Oil Field. The Formation is divided into three reservoir units (MA, MB, MC). The unit MB is divided into two secondary units (MB1, MB2) while the unit MC is also divided into two secondary units (MC1, MC2). Using Geoframe software, the available well log images (sonic, density, neutron, gamma ray, spontaneous potential, and resistivity logs) were digitized and updated. Petrophysical properties, such as porosity, saturation of water, saturation of hydrocarbon, etc. were calculated and explained. The total porosity was measured using the density and neutron log, and then corrected to measure the effective porosity by the volume content of clay. Neutron -density cross-plot showed that Mishrif Formation lithology consists predominantly of limestone. The reservoir water resistivity (Rw) values of the Formation were calculated using Pickett-Plot method.   


2019 ◽  
Vol 10 (3) ◽  
pp. 118-124
Author(s):  
Mustafa Yar ◽  
Syed Waqas Haider ◽  
Ghulam Nabi ◽  
Muhammad Tufail ◽  
Sajid Rahman

Present study deals with petrophysical interpretation of Zaur-03 well for reservoir characterization of sandintervals of Lower Goru Formation in Badin Block, Southern Indus Basin, Pakistan. Early Cretaceous Lower GoruFormation is the distinct reservoir that is producing hydrocarbons for two decades. Complete suite of wireline logsincluding GR log, Caliper log, SP log, Resistivity logs (MSFL, LLS, LLD), Neutron log and Density log along withwell tops and complete drilling parameters were analyzed in this study. The prime objective of this study was to markzones of interest that could act as reservoir and to evaluate reservoir properties including shale volume (Vsh), porosity(ϕ), water saturation (Sw), hydrocarbon saturation (Sh) and net pay thickness. Based on Petrophysical evaluation threezones have been marked in Lower Goru Formation, A Sand (1890m to 1930m), B-sand (1935m to 2010) and C-sand(2015m to 2100m). The average calculated parameters for evaluation of reservoir properties of Zaur-03 well depicts anaverage porosity of 8.92% and effective porosity of 4.81%. Water Saturation is calculated as 28.54% and HydrocarbonsSaturation is 71.46%. Analysis shows that Sh in Zaur-03 well is high so the production of hydrocarbons iseconomically feasible.


Author(s):  
Mustafa Yar ◽  
Syed Waqas Haider ◽  
Ghulam Nabi ◽  
Muhammad Tufail ◽  
Sajid Rahman

Present study deals with petrophysical interpretation of Zaur-03 well for reservoir characterization of sandintervals of Lower Goru Formation in Badin Block, Southern Indus Basin, Pakistan. Early Cretaceous Lower GoruFormation is the distinct reservoir that is producing hydrocarbons for two decades. Complete suite of wireline logsincluding GR log, Caliper log, SP log, Resistivity logs (MSFL, LLS, LLD), Neutron log and Density log along withwell tops and complete drilling parameters were analyzed in this study. The prime objective of this study was to markzones of interest that could act as reservoir and to evaluate reservoir properties including shale volume (Vsh), porosity(ϕ), water saturation (Sw), hydrocarbon saturation (Sh) and net pay thickness. Based on Petrophysical evaluation threezones have been marked in Lower Goru Formation, A Sand (1890m to 1930m), B-sand (1935m to 2010) and C-sand(2015m to 2100m). The average calculated parameters for evaluation of reservoir properties of Zaur-03 well depicts anaverage porosity of 8.92% and effective porosity of 4.81%. Water Saturation is calculated as 28.54% and HydrocarbonsSaturation is 71.46%. Analysis shows that Sh in Zaur-03 well is high so the production of hydrocarbons iseconomically feasible.


2019 ◽  
pp. 2656-2663
Author(s):  
Layla khudhur Abbas ◽  
Thamar Abdullah Mahdi

The reservoir units of Mishrif Formation in Majnoon oil field were studied by using available wireline logs (gamma ray, porosity and resistivity) and facies that derived from core and cutting samples for three wells including Mj-1, Mj-15, and Mj-20. The reservoir properties were determined and interpreted by using IP software. The results showed that unit D have the best reservoir properties due to high effective porosity, low water saturation and very low volume of shale. Furthermore, a large part of this unit was deposited in shoal environment. The other reservoir units are then graded in reservoir properties including units B, A, F & E respectively, except unit C, which is considered as a cap unit, because it consists of restricted marine facies so that; it has high volume of shale and water saturation and very low effective porosity.


2020 ◽  
Vol 5 (2) ◽  
pp. 69-75
Author(s):  
Raja Asim Zeb ◽  
Muhammad Haziq Khan ◽  
Intikhab Alam ◽  
Ahtisham Khalid ◽  
Muhammad Faisal Younas

The lower Indus basin is leading hydrocarbon carriage sedimentary basin in Pakistan. Evaluation of two sorts out wells namely Sawan-2 and Sawan-3 has been assumed in this work for estimation and dispensation of petro physical framework using well log data. The systematic formation assessment by using petro physical studies and neutron density cross plots reveal that lithofacies mainly composed of sandstone. The hydrocarbon capability of the formation zone have been mark through several isometric maps such as water saturation, picket plots, cross plots, log analysis Phie vs depth and composite log analysis. The estimated petro physical properties shows that reservoir have volume of shale 6.1% and 14.0%, total porosity is observed between 14.6% and 18.2%, effective porosity ranges 12.5-16.5%, water saturation exhibits between 14.05% and 31.58%, hydrocarbon saturation ranges 68.42% -86.9%, The lithology of lower goru formation is dominated by very fine to fine and silty sandstone. The study method can be use within the vicinity of central Indus basin and similar basin elsewhere in the globe to quantify petro physical properties of oil and gas wells and comprehend the reservoir potential.


Petrophysical analysis is key to the success of any oil exploration and exploitation work and this task requires evaluation of the reservoir parameters in order to enhance accurate estimation of the volume of oil in place. This research work involves the use of suite of well logs from 4-wells to carry out the petrophysical analysis of ‘Bright’ Field Niger Delta. The approach used includes lithology identification, reservoir delineation and estimation of reservoir parameters. Two sand bodies were mapped across the entire field showing their geometry and lateral continuity, gamma ray and resistivity logs were used to delineate the reservoirs prior to correlation and relevant equations were used to estimate the reservoir parameters. The result of the petrophysical analysis showed variations in the reservoir parameters within the two correlated sand bodies with high hydrocabon saturation in sand 1 well 1 while the remaining wells within the correlated wells are water bearing. The porosity values range from 0.19 to 0.32, volume of shale from 0.15 to 0.40, water saturation from 0.20 to 0.92 for the sand bodies.


2019 ◽  
Vol 7 (2) ◽  
pp. 142
Author(s):  
Ubong Essien

Well log data from two wells were evaluated for shale volume, total and effective porosity. Well log data were obtained from gamma ray, neutron-density log, resistivity, sonic and caliper log respectively. This study aimed at evaluating the effect of shale volume, total and effective porosity form two well log data. The results of the analysis depict the presence of sand, sand-shale and shale formations. Hydrocarbon accumulation were found to be high in sand, fair in sand-shale and low in shale, since existence of shale reduces total and effective porosity and water saturation of the reservoir. The thickness of the reservoir ranged from 66 – 248.5ft. The average values of volume of shale, total and effective porosity values ranged from 0.004 – 0.299dec, 0.178 – 0.207dec and 0.154 – 0.194dec. Similarly, the water saturation and permeability ranged from 0.277 – 0.447dec and 36.637 - 7808.519md respectively. These values of total and effective porosity are high in sand, fair in sand-shale and low in shale formations. The results for this study demonstrate: accuracy, applicability of these approaches and enhance the proper evaluation of petrophysical parameters from well log data.    


2020 ◽  
Vol 24 (8) ◽  
pp. 1321-1327
Author(s):  
S.C.P. Finecountry ◽  
S. Inichinbia

The lithology and fluid discrimination of an onshore Sody field, of the Niger Delta was studied using gamma ray, resistivity and density logs from  three wells in the field in order to evaluate the field’s reservoir properties. Two reservoir sands (RES 1 and RES 2) were delineated and identified as hydrocarbon bearing reservoirs. The petrophysical parameters calculated include total porosity, water saturation and volume of shale. The results obtained revealed that the average porosity of the reservoir sands, range from 21% to 39%, which is excellent indicator of a good quality reservoir and probably reflecting well sorted coarse grain sandstone reservoirs with minimal cementation. Water saturation is low in all the reservoirs, ranging from 2% to 32%, indicating that the proportion of void spaces occupied by water is low, and implying high hydrocarbon saturation. The crossplot discriminated the reservoirs lithologies as sand, shaly sand and shale sequences, except well Sody 2 which differentiated its lithologies as sand and shale sequences and distinguished the reservoirs’ litho-fluids into three, namely; gas, oil and brine. These results suggest that the reservoirs sand units of Sody field contain significant accumulations of hydrocarbon. Keywords: Reservoir, porosity, net-to-gross, impedance, lithology


Sign in / Sign up

Export Citation Format

Share Document