scholarly journals Film Thickness-Profile Measurement Using Iterative Peak Separation Structured Illumination Microscopy

2021 ◽  
Vol 11 (7) ◽  
pp. 3023
Author(s):  
Kejun Yang ◽  
Chenhaolei Han ◽  
Jinhua Feng ◽  
Yan Tang ◽  
Zhongye Xie ◽  
...  

The surface and thickness distribution measurement for transparent film is of interest for electronics and packaging materials. Structured illumination microscopy (SIM) is a prospective technique for measuring film due to its high accuracy and efficiency. However, when the distance between adjacent layers becomes close, the peaks of the modulation depth response (MDR) start to overlap and interfere with the peak extraction, which restricts SIM development in the field of film measurement. In this paper, an iterative peak separation algorithm is creatively applied in the SIM-based technique, providing a precise peak identification even as the MDR peaks overlap and bend into one. Compared with the traditional method, the proposed method has a lower detection threshold for thickness. The experiments and theoretical analysis are elaborated to demonstrate the feasibility of the mentioned method.

2019 ◽  
Vol 12 (03) ◽  
pp. 1950014 ◽  
Author(s):  
Xibin Yang ◽  
Qian Zhu ◽  
Zhenglong Sun ◽  
Gang Wen ◽  
Xin Jin ◽  
...  

Structured illumination microscopy (SIM) is a promising super-resolution technique for imaging subcellular structures and dynamics due to its compatibility with most commonly used fluorescent labeling methods. Structured illumination can be obtained by either laser interference or projection of fringe patterns. Here, we proposed a fringe projector composed of a compact multi-wavelength LEDs module and a digital micromirror device (DMD) which can be directly attached to most commercial inverted fluorescent microscopes and update it into a SIM system. The effects of the period and duty cycle of fringe patterns on the modulation depth of the structured light field were studied. With the optimized fringe pattern, [Formula: see text] resolution improvement could be obtained with high-end oil objectives. Multicolor imaging and dynamics of subcellular organelles in live cells were also demonstrated. Our method provides a low-cost solution for SIM setup to expand its wide range of applications to most research labs in the field of life science and medicine.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Liang Feng ◽  
Langfeng Zhou ◽  
Xinlei Sun ◽  
Qiang Xu ◽  
Ping Chen ◽  
...  

Abstract We present and demonstrate an efficient method for the reconstruction of profiles acquired by multifocal structured illumination microscopy (MSIM) utilizing few raw images. Firstly, we propose a method to produce nine raw multifocal images with enhanced modulation depth to accomplish the uniform illumination of the sample. Then, combing with the parameter of the arrays, we perform the standard construct reconstruction procedure of structured illumination microscopy (SIM) row by row and column by column. Finally, we combine these restored images together to obtain the final image with enhanced resolution and good contrast. Based on theoretical analysis and numerical simulations, this method shows great potential in the field of the image reconstruction of MSIM data.


Methods ◽  
2015 ◽  
Vol 75 ◽  
pp. 61-68 ◽  
Author(s):  
Laure-Anne Ligeon ◽  
Nicolas Barois ◽  
Elisabeth Werkmeister ◽  
Antonino Bongiovanni ◽  
Frank Lafont

ACS Photonics ◽  
2021 ◽  
Author(s):  
Alice Sandmeyer ◽  
Mario Lachetta ◽  
Hauke Sandmeyer ◽  
Wolfgang Hübner ◽  
Thomas Huser ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karin Legerstee ◽  
Tsion E. Abraham ◽  
Wiggert A. van Cappellen ◽  
Alex L. Nigg ◽  
Johan A. Slotman ◽  
...  

AbstractFocal adhesions (FAs) are flat elongated structures that mediate cell migration and link the cytoskeleton to the extracellular matrix. Along the vertical axis FAs were shown to be composed of three layers. We used structured illumination microscopy to examine the longitudinal distribution of four hallmark FA proteins, which we also used as markers for these layers. At the FA ends pointing towards the adherent membrane edge (heads), bottom layer protein paxillin protruded, while at the opposite ends (tails) intermediate layer protein vinculin and top layer proteins zyxin and VASP extended further. At the tail tips, only intermediate layer protein vinculin protruded. Importantly, head and tail compositions were altered during HGF-induced scattering with paxillin heads being shorter and zyxin tails longer. Additionally, FAs at protruding or retracting membrane edges had longer paxillin heads than FAs at static edges. These data suggest that redistribution of FA-proteins with respect to each other along FAs is involved in cell movement.


Sign in / Sign up

Export Citation Format

Share Document