scholarly journals An All-Mach Number HLLC-Based Scheme for Multi-Phase Flow with Surface Tension

2021 ◽  
Vol 11 (8) ◽  
pp. 3413
Author(s):  
Muhammad Y. Oomar ◽  
Arnaud G. Malan ◽  
Roy A. D. Horwitz ◽  
Bevan W. S. Jones ◽  
Genevieve S. Langdon

This paper presents an all-Mach method for two-phase inviscid flow in the presence of surface tension. A modified version of the Hartens–Lax–van Leer Contact (HLLC) solver is developed and combined for the first time with a widely used volume-of-fluid (VoF) method: the compressive interface capturing scheme for arbitrary meshes (CICSAM). This novel combination yields a scheme with both HLLC shock capturing as well as accurate liquid–gas interface tracking characteristics. It is achieved by reconstructing non-conservative (primitive) variables in a consistent manner to yield both robustness and accuracy. Liquid–gas interface curvature is computed via height functions and the convolution method. We emphasize the use of VoF in the interest of interface accuracy when modelling surface tension effects. The method is validated using a range of test-cases available in the literature. The results show flow features that are in sensible agreement with previous experimental and numerical work. In particular, the use of the HLLC-VoF combination leads to a sharp volume fraction and energy field with improved accuracy.

2018 ◽  
Vol 141 (3) ◽  
Author(s):  
T. Salameh ◽  
Y. Zurigat ◽  
A. Badran ◽  
C. Ghenai ◽  
M. El Haj Assad ◽  
...  

This paper presents three-dimensional numerical simulation results of the effect of surface tension on two-phase flow over unglazed collector covered with a wire screen. The homogenous model is used to simulate the flow with and without the effect of porous material of wire screen and surface tension. The Eulerian-Eulerian multiphase flow approach was used in this study. The phases are completely stratified, the interphase is well defined (free surface flow), and interphase transfer rate is very large. The liquid–solid interface, gas–liquid interface, and the volume fraction for both phases were considered as boundaries for this model. The results show that the use of porous material of wire screen will reduce the velocity of water flow and help the water flow to distribute evenly over unglazed plate collector. The possibility of forming any hot spot region on the surface was reduced. The water velocity with the effect of surface tension was found higher than the one without this effect, due to the extra momentum source added by surface tension in longitudinal direction. The use of porous material of wires assures an evenly distribution flow velocity over the inclined plate, therefore helps a net enhancement of heat transfer mechanism for unglazed solar water collector application.


1994 ◽  
Vol 124 (6) ◽  
pp. 1119-1134 ◽  
Author(s):  
Robert Lipton ◽  
Bogdan Vernescu

We consider an emulsion of two Stokes fluids, one of which is periodically distributed in the form of small spherical bubbles. The effects of surface tension on the bubble boundaries are modelled mathematically, as in the work of G. I. Taylor, by a jump only in the normal component of the traction. For a given volume fraction of bubbles, we consider the two-scale convergence, and in the fine phase limit we find that the bulk flow is described by an anisotropic Stokes fluid. The effective viscosity tensor is consistent with the bulk stress formula obtained by Batchelor [2].


Fluids ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 80
Author(s):  
Yuria Okagaki ◽  
Taisuke Yonomoto ◽  
Masahiro Ishigaki ◽  
Yoshiyasu Hirose

Many thermohydraulic issues about the safety of light water reactors are related to complicated two-phase flow phenomena. In these phenomena, computational fluid dynamics (CFD) analysis using the volume of fluid (VOF) method causes numerical diffusion generated by the first-order upwind scheme used in the convection term of the volume fraction equation. Thus, in this study, we focused on an interface compression (IC) method for such a VOF approach; this technique prevents numerical diffusion issues and maintains boundedness and conservation with negative diffusion. First, on a sufficiently high mesh resolution and without the IC method, the validation process was considered by comparing the amplitude growth of the interfacial wave between a two-dimensional gas sheet and a quiescent liquid using the linear theory. The disturbance growth rates were consistent with the linear theory, and the validation process was considered appropriate. Then, this validation process confirmed the effects of the IC method on numerical diffusion, and we derived the optimum value of the IC coefficient, which is the parameter that controls the numerical diffusion.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1543
Author(s):  
Luka Sturtewagen ◽  
Erik van der Linden

The ability to separate enzymes, nucleic acids, cells, and viruses is an important asset in life sciences. This can be realised by using their spontaneous asymmetric partitioning over two macromolecular aqueous phases in equilibrium with one another. Such phases can already form while mixing two different types of macromolecules in water. We investigate the effect of polydispersity of the macromolecules on the two-phase formation. We study theoretically the phase behavior of a model polydisperse system: an asymmetric binary mixture of hard spheres, of which the smaller component is monodisperse and the larger component is polydisperse. The interactions are modelled in terms of the second virial coefficient and are assumed to be additive hard sphere interactions. The polydisperse component is subdivided into sub-components and has an average size ten times the size of the monodisperse component. We calculate the theoretical liquid–liquid phase separation boundary (the binodal), the critical point, and the spinodal. We vary the distribution of the polydisperse component in terms of skewness, modality, polydispersity, and number of sub-components. We compare the phase behavior of the polydisperse mixtures with their concomittant monodisperse mixtures. We find that the largest species in the larger (polydisperse) component causes the largest shift in the position of the phase boundary, critical point, and spinodal compared to the binary monodisperse binary mixtures. The polydisperse component also shows fractionation. The smaller species of the polydisperse component favor the phase enriched in the smaller component. This phase also has a higher-volume fraction compared to the monodisperse mixture.


2017 ◽  
Vol 28 (09) ◽  
pp. 1750120 ◽  
Author(s):  
Yong Peng ◽  
Yun Fei Mao ◽  
Bo Wang ◽  
Bo Xie

Equations of State (EOS) is crucial in simulating multiphase flows by the pseudo-potential lattice Boltzmann method (LBM). In the present study, the Peng and Robinson (P–R) and Carnahan and Starling (C–S) EOS in the pseudo-potential LBM with Exact Difference Method (EDM) scheme for two-phase flows have been compared. Both of P–R and C–S EOS have been used to study the two-phase separation, surface tension, the maximum two-phase density ratio and spurious currents. The study shows that both of P–R and C–S EOS agree with the analytical solutions although P–R EOS may perform better. The prediction of liquid phase by P–R EOS is more accurate than that of air phase and the contrary is true for C–S EOS. Predictions by both of EOS conform with the Laplace’s law. Besides, adjustment of surface tension is achieved by adjusting [Formula: see text]. The P–R EOS can achieve larger maximum density ratio than C–S EOS under the same [Formula: see text]. Besides, no matter the C–S EOS or the P–R EOS, if [Formula: see text] tends to 0.5, the computation is prone to numerical instability. The maximum spurious current for P–R is larger than that of C–S. The multiple-relaxation-time LBM still can improve obviously the numerical stability and can achieve larger maximum density ratio.


2021 ◽  
pp. 251659842110388
Author(s):  
Ankit Rathi ◽  
S. I. Kundalwal

In this study, the tensile properties of two-phase and three-phase graphene/ZrO2-hybrid poly (methyl methacrylate) (PMMA) nanocomposites are investigated by developing finite element model using ANSYS. Primarily, the effective elastic properties of two- and three-phase graphene/ZrO2-hybrid PMMA nanocomposites (GRPCs) are estimated by developing mechanics of material (MOM) model. Results indicated that the effective elastic properties of GRPCs increase with an increase in the volume fraction of graphene. Also, the stiffness of GRPCs is increased by 78.12% with increasing in the volume fraction of graphene from 0.1 to 0.5 Vf. The incorporation of an additional ZrO2 interphase significantly improved the mechanical performance of resulting GRPCs.


Sign in / Sign up

Export Citation Format

Share Document