scholarly journals Experimental Evidence of Specimen-Size Effects on EN-AW6082 Aluminum Alloy in VHCF Regime

2021 ◽  
Vol 11 (9) ◽  
pp. 4272
Author(s):  
Stefano Invernizzi ◽  
Francesco Montagnoli ◽  
Alberto Carpinteri

The present paper investigates the influence of the specimen size of EN-AW6082 wrought aluminium alloy subjected to very high cycle fatigue (VHCF) tests. The hourglass specimens were tested under fully reversed loading condition, up to 109 cycles, by means of the ultrasonic fatigue testing machine developed by Italsigma® (Italy). Three specimens groups were considered, with a diameter in the middle cross-section ranging from 3 mm up to 12 mm. The stress field in the specimens was determined numerically and by strain gauge measurements in correspondence of the cross-section surface. The dispersion of experimental results has been accounted for, and data are reported in P-S-N diagrams. The decrease in fatigue resistance with increasing specimen size is evident. Theoretical explanation for the observed specimen-size effect is provided, based on Fractal Geometry concepts, allowing to obtain scale independent P-S*-N curves. The fatigue life expectation in the VHCF regime of the EN-AW6082 aluminium alloy full-scale components is rather overestimated if it is assessed only from standard small specimens of 3 mm in diameter. Experimental tests carried out on larger specimens, and a proper extrapolation, are required to assure safe structural design.

Author(s):  
Stefano Invernizzi ◽  
Francesco Montagnoli ◽  
Alberto Carpinteri

The present paper investigates the influence of the specimen size of EN-AW6082 wrought aluminium alloy subjected to very high cycle fatigue (VHCF) tests. The hourglass specimens were tested under fully reversed loading condition, up to 10^9 cycles, by means of the ultrasonic fatigue testing machine developed by Italsigma® (Italy). Three specimens groups were considered, with a diameter in the middle cross-section ranging from 3 mm up to 12 mm. The stress field in the specimens was determined numerically and by strain gauge measurements in correspondence of the cross-section surface. The dispersion of experimental results has been accounted for, and data are reported in P-S-N diagrams. The decrease in fatigue resistance with increasing specimen size is evident. Theoretical explanation for the observed specimen-size effect is provided, based on Fractal Geometry concepts, allowing to obtain scale independent P-S*-N curves. The fatigue life expectation in the VHCF regime of the EN-AW6082 aluminium alloy full-scale components is rather overestimated if it is assessed only from standard small specimens of 3 mm in diameter. Experimental tests carried out on larger specimen, and a proper extrapolation, are required to assure safe structural design.


2016 ◽  
Vol 17 ◽  
pp. 14-30 ◽  
Author(s):  
Okechukwu P. Nwachukwu ◽  
Alexander V. Gridasov ◽  
Ekaterina A. Gridasova

This review looks into the state of gigacycle fatigue behavior of some structural materials used in engineering works. Particular attention is given to the use of ultrasonic fatigue testing machine (USF-2000) due to its important role in conducting gigacycle fatigue tests. Gigacycle fatigue behavior of most materials used for very long life engineering applications is reviewed.Gigacycle fatigue behavior of magnesium alloys, aluminum alloys, titanium alloys, spheroid graphite cast iron, steels and nickel alloys are reviewed together with the examination of the most common material defects that initiate gigacycle fatigue failures in these materials. In addition, the stage-by-stage fatigue crack developments in the gigacycle regime are reviewed. This review is concluded by suggesting the directions for future works in gigacycle fatigue.


2013 ◽  
Vol 592-593 ◽  
pp. 501-504 ◽  
Author(s):  
Dominik Krewerth ◽  
Anja Weidner ◽  
Horst Biermann

The present paper illustrates a comparison of infrared thermography during ultrasonic fatigue testing of cast steel 42CrMo4 and cast aluminium alloy AlSi7Mg. Against the background of different material properties (e.g. mechanical properties as well as thermal properties) the benefit of this non-destructive material testing method in terms of determining the crack initiation point and time during fatigue testing as well as crack propagation is evaluated and discussed. Moreover, correlations between fractography and infrared thermography are performed for both materials.


2014 ◽  
Vol 891-892 ◽  
pp. 536-541 ◽  
Author(s):  
Zhi Hong Xiong ◽  
Masatoshi Futakawa ◽  
Takashi Naoe ◽  
Katsuhiro Maekawa

Very high cycle fatigue degradation of type 316L austenitic stainless steel, which is used as the structural material of neutron spallation sources under intensive neutron irradiation environment, is investigated by using an ultrasonic fatigue testing machine. The strain rate imposed on the structure of neutron spallation source is almost equivalent to that produced in the testing machine. The temperature on the surface was controlled by the air-cooling. The effect of strain rate on the fatigue strength is recognized to increase the fatigue limit.


2013 ◽  
Vol 55 (2) ◽  
pp. 78-83 ◽  
Author(s):  
Stephan Kovacs ◽  
Sebastian Stille ◽  
Daniel Ernstes ◽  
Tilmann Beck

2012 ◽  
Vol 165 ◽  
pp. 219-223
Author(s):  
K.A. Zakaria ◽  
S. Abdullah ◽  
Mariyam Jameelah Ghazali ◽  
C.H. Azhari

This paper discusses the fatigue fracture behaviour of aluminium alloy AA6061-T6 under spectrum loadings at room and elevated temperatures. The load sequence can have a very significant effect in fatigue lives and normally the fatigue strength of material decrease with increasing temperature. In this study, variable amplitude loading (VAL) signal was obtained from the engine mount bracket of an automobile in a normal driving condition. Constant amplitude loading (CAL), high to low and low to high spectrum loadings were then derived from the VAL obtained from the data capturing process to study the fatigue behaviour that subjected to spectrum loadings at the room and elevated temperatures. The fatigue tests were performed according to an ASTM E466 standard using a servo-hydraulic fatigue testing machine. Fatigue fracture surfaces were then sectioned and inspected by employing a high magnification microscope. Results indicated that fracture surface behaviours of specimens were influenced significantly by the load sequence and temperatures, which can be related to the fatigue lives of aluminium alloy under spectrum loadings.


Sign in / Sign up

Export Citation Format

Share Document