scholarly journals Textile-Based Coils for Inductive Wireless Power Transmission

2021 ◽  
Vol 11 (9) ◽  
pp. 4309
Author(s):  
Sebastian Micus ◽  
Laura Padani ◽  
Michael Haupt ◽  
Götz T. Gresser

We developed and evaluated different textile-based inductive coils for near-field wireless power transmission. The technology uses electromagnetic induction for the contactless transfer of electrical energy. Therefore, we investigated various methods for the attachment of conductive materials on a textile-based material and the production of textile-based coils based on QI standard. Afterwards, the textile-based coils were examined and evaluated due to their specific quality characteristics. This happens by calculating the transmission quality and the maximum efficiency of the system which enables comparison of different coil systems and indicates the transmission efficiency of the systems.

Author(s):  
Jin Xu ◽  
Yuting Zhao

Background: Detuning is the main problem that affects the efficiency and transmission distance of the resonant coupling Wireless Power Transmission (WPT). The distance of load and the offset of the load position could cause serious detuning. Methods: This paper presents an adjustable coil in which inductance can be adjusted. Then a model of WPT was established that could compensate resonant frequency automatically using the adjustable coil. Next, the relationship between the primary resonant frequency and the transmission efficiency is analyzed from the circuit. The analysis proved that the design of the adjustable coil could improve the transmission efficiency of the WPT system. Finally, a prototype of WPT system was built. Results: The experimental results showed that WPT system with adjustable coil can improve the transmission efficiency which proves the theoretical research. At the same time, it has essential reference value for the future research of WPT. Conclusion: In this paper, aiming at the system detuning caused by some other factors, such as the position shift of the load during the wireless power transmission, an adjustable coil is proposed.


2014 ◽  
Vol 926-930 ◽  
pp. 434-439
Author(s):  
Chang Sheng Li ◽  
Juan Cao ◽  
He Zhang

Magnetic resonance wireless power transmission technology is based on the phenomenon of resonant coupling to realize non-contact power transmission via near magnetic field. Based on the mutual coupling model of resonance system, the influence laws of system transmission parameters, such as coil coupling coefficients, load resistance, etc., on the transmission performance are theoretically studied in this paper. The research results shows that the power high-efficiency and high-quality transmission does not depend on the large coil loop coupling coefficient and the working frequencies of maximum power and maximum efficiency transmission do not coincide at most condition. Transmission systems with a high resonance frequency can produce high power and efficiency transmission over short distances. In addition, by increasing the coil diameter or wire diameter can improve the system quality factor, and optimize the energy transmission performance.


Author(s):  
Anurag Saxena ◽  
Paras Raizada ◽  
Lok Prakash Gautam ◽  
Bharat Bhushan Khare

Wireless power transmission is the transmission of electrical energy without using any conductor or wire. It is useful to transfer electrical energy to those places where it is hard to transmit energy using conventional wires. In this chapter, the authors designed and implemented a wireless power transfer system using the basics of radio frequency energy harvesting. Numerical data are presented for power transfer efficiency of rectenna. From the simulated results, it is clear that the anticipated antenna has single band having resonant frequency 2.1 GHz. The anticipated antenna has impedance bandwidth of 62.29% for single band. The rectenna has maximum efficiency of 60% at 2.1 GHz. The maximum voltage obtained by DC-DC converter is 4V at resonant frequency.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1963 ◽  
Author(s):  
Xuan-Tu Cao ◽  
Wan-Young Chung

Recently, radio frequency (RF) energy harvesting (RFEH) has become a promising technology for a battery-less sensor module. The ambient RF radiation from the available sources is captured by receiver antennas and converted to electrical energy, which is used to supply smart sensor modules. In this paper, an enhanced method to improve the efficiency of the RFEH system using strongly coupled electromagnetic resonance technology was proposed. A relay resonator was added between the reader and tag antennas to improve the wireless power transmission efficiency to the sensor module. The design of the relay resonator was based on the resonant technique and near-field magnetic coupling concept to improve the communication distance and the power supply for a sensor module. It was designed such that the self-resonant frequencies of the reader antenna, tag antenna, and the relay resonator are synchronous at the HF frequency (13.56MHz). The proposed method was analyzed using Thevenin equivalent circuit, simulated and experimental validated to evaluate its performance. The experimental results showed that the proposed harvesting method is able to generate a great higher power up to 10 times than that provided by conventional harvesting methods without a relay resonator. Moreover, as an empirical feasibility test of the proposed RF energy harvesting device, a smart sensor module which is placed inside a meat box was developed. It was utilized to collect vital data, including temperature, relative humidity and gas concentration, to monitor the freshness of meat. Overall, by exploiting relay resonator, the proposed smart sensor tag could continuously monitor meat freshness without any batteries at the innovative maximum distance of approximately 50 cm.


Sign in / Sign up

Export Citation Format

Share Document