scholarly journals Salt Cavern Exergy Storage Capacity Potential of UK Massively Bedded Halites, Using Compressed Air Energy Storage (CAES)

2021 ◽  
Vol 11 (11) ◽  
pp. 4728
Author(s):  
David Evans ◽  
Daniel Parkes ◽  
Mark Dooner ◽  
Paul Williamson ◽  
John Williams ◽  
...  

The increasing integration of large-scale electricity generation from renewable energy sources in the grid requires support through cheap, reliable, and accessible bulk energy storage technologies, delivering large amounts of electricity both quickly and over extended periods. Compressed air energy storage (CAES) represents such a storage option, with three commercial facilities using salt caverns for storage operational in Germany, the US, and Canada, with CAES now being actively considered in many countries. Massively bedded halite deposits exist in the UK and already host, or are considered for, solution-mined underground gas storage (UGS) caverns. We have assessed those with proven UGS potential for CAES purposes, using a tool developed during the EPSRC-funded IMAGES project, equations for which were validated using operational data from the Huntorf CAES plant. From a calculated total theoretical ‘static’ (one-fill) storage capacity exceeding that of UK electricity demand of ≈300 TWh in 2018, filtering of results suggests a minimum of several tens of TWh exergy storage in salt caverns, which when co-located with renewable energy sources, or connected to the grid for off-peak electricity, offers significant storage contributions to support the UK electricity grid and decarbonisation efforts.

Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1065 ◽  
Author(s):  
Mark Dooner ◽  
Jihong Wang

As the number of renewable energy sources connected to the grid has increased, the need to address the intermittency of these sources becomes essential. One solution to this problem is to install energy storage technologies on the grid to provide a buffer between supply and demand. One such energy storage technology is Compressed Air Energy Storage (CAES), which is suited to large-scale, long-term energy storage. Large scale CAES requires underground storage caverns, such as the salt caverns situated in the Cheshire Basin, UK. This study uses cavern data from the Cheshire Basin as a basis for performing an energy and exergy analysis of 10 simulated CAES systems to determine the exergy storage potential of the caverns in the Cheshire Basin and the associated work and power input and output. The analysis revealed that a full charge of all 10 caverns could store 25.32 GWh of exergy, which can be converted to 23.19 GWh of work, which requires 43.27 GWh of work to produce, giving a round trip efficiency of around 54%. This corresponds to an input power of 670.07 GW and an output power of 402.74 GW. The Cheshire Basin could support around 100 such CAES plants, giving a potential total exergy storage capacity of 2.53 TWh and a power output of 40 TW. This is a significant amount of storage which could be used to support the UK grid. The total exergy destroyed during a full charge, store, and discharge cycle for each cavern ranged from 299.02 MWh to 1600.00 MWh.


Author(s):  
Abdulla Ahmed ◽  
Tong Jiang

<p>The wind energy plays an important role in power system because of its renewable, clean and free energy. However, the penetration of wind power (WP) into the power grid system (PGS) requires an efficient energy storage systems (ESS). compressed air energy storage (CAES) system is one of the most ESS technologies which can alleviate the intermittent nature of the renewable energy sources (RES). Nyala city power plant in Sudan has been chosen as a case study because the power supply by the existing power plant is expensive due to high costs for fuel transport and the reliability of power supply is low due to uncertain fuel provision. This paper presents a formulation of security-constrained unit commitment (SCUC) of diesel power plant (DPP) with the integration of CAES and PW. The optimization problem is modeled and coded in MATLAB which solved with solver GORUBI 8.0. The results show that the proposed model is suitable for integration of renewable energy sources (RES) into PGS with ESS and helpful in power system operation management.</p>


Author(s):  
Reza Baghaei Lakeh ◽  
Ian C. Villazana ◽  
Sammy Houssainy ◽  
Kevin R. Anderson ◽  
H. Pirouz Kavehpour

The share of renewable energy sources in the power grid is showing an increasing trend world-wide. Most of the renewable energy sources are intermittent and have generation peaks that do not correlate with peak demand. The stability of the power grid is highly dependent on the balance between power generation and demand. Compressed Air Energy Storage (CAES) systems have been utilized to receive and store the electrical energy from the grid during off-peak hours and play the role of an auxiliary power plant during peak hours. Using Thermal Energy Storage (TES) systems with CAES technology is shown to increase the efficiency and reduce the cost of generated power. In this study, a modular solid-based TES system is designed to store thermal energy converted from grid power. The TES system stores the energy in the form of internal energy of the storage medium up to 900 K. A three-dimensional computational study using commercial software (ANSYS Fluent) was completed to test the performance of the modular design of the TES. It was shown that solid-state TES, using conventional concrete and an array of circular fins with embedded heaters, can be used for storing heat for a high temperature hybrid CAES (HTH-CAES) system.


Author(s):  
Miroslav P. Petrov ◽  
Reza Arghandeh ◽  
Robert Broadwater

Distributed energy storage has been recognized as a valuable and often indispensable complement to small-scale power generation based on renewable energy sources. Small-scale energy storage positioned at the demand side would open the possibility for enhanced predictability of power output and easier integration of small-scale intermittent generators into functioning electricity markets, as well as offering inherent peak shaving abilities for mitigating contingencies and blackouts, for reducing transmission losses in local networks, profit optimization and generally allowing tighter utility control on renewable energy generation. Distributed energy storage at affordable costs and of low environmental footprint is a necessary prerequisite for the wider deployment of renewable energy and its deeper penetration into local networks. Thermodynamic energy storage in the form of compressed air is an alternative to electrochemical energy storage in batteries and has been evaluated in various studies and tested commercially on a large scale. Distributed compressed air energy storage (DCAES) systems in combination with renewable energy generators installed at residential homes, public or commercial buildings are a viable alternative to large-scale energy storage, moreover promising lower specific investment than batteries if a mass-market is established. Flexible control methods can be applied to DCAES units, resulting in a complex system running either independently for home power supply, or as a unified and centrally controlled utility-scale energy storage entity. This study aims at conceptualizing the plausible distributed compressed-air energy storage units, examining the feasibility for their practical implementation and analyzing their behavior, as well as devising the possible control strategies for optimal utilization of grid-integrated renewable energy sources at small scales. Results show that overall energy storage efficiency of around 70% can be achieved with comparatively simple solutions, offering less technical challenges and lower specific costs than comparable electrical battery systems. Furthermore, smart load management for improving the dispatchability can bring additional benefits by profit optimization and decrease the payback time substantially.


2021 ◽  
Vol 7 ◽  
Author(s):  
Francesco Antonio Tiano ◽  
Gianfranco Rizzo

The high concentration of CO2 in the atmosphere and the increase in sea and land temperatures make the use of renewable energy sources increasingly urgent. To overcome the problem of non-programmability of renewable sources, this study analyzes an energy storage system consisting of under water compressed air energy storage (UWCAES). A case study for fully power the Sicily region (Italy) with renewable energy source (wind and photovoltaic) is presented. From the real annual capacity values of the renewable plants installed in Sicily, a sizing of both the energy production and the storage system and its auxiliary services is evaluated. The optimization of the operation of the system as a whole, modeled with mathematical models already validated in previous studies, is obtained through dynamic programming. The electricity consumed annually by the region, equal to 19048.4 GWh, can be entirely satisfied by renewable energy sources. A sizing of plants powered by renewable sources for a nominal power of 15, 000 MW equally divided between photovoltaic and wind power is considered. The underwater air storage system has a maximum volume of 2.1 × 108 m3, while the compression and generation units have a total nominal power of 6, 900 and 3, 100 MW, respectively. The study finally presents a sensitivity analysis for the evaluation of the effects of the variation of the power produced by renewable energy sources and of Sicily energy consumption. The results show that carbon-free feeding is possible and that all the boundary conditions on the operation of the system can be met.


Author(s):  
Shreyas M. Patel ◽  
Paul T. Freeman ◽  
John R. Wagner

Non-renewable energy sources such as coal, oil, and natural gas are being consumed at a brisk pace while greenhouse gases contribute to atmospheric pollution. A global shift is underway toward the inclusion of renewable energy sources, such as solar and wind, for generating electrical and mechanical power. To meet this emerging demand, a solar based electrical microgrid study is underway at Clemson University. Solar energy is harvested from photovoltaic panels capable of producing 15 kW of DC power. Compressed air energy storage has been evaluated using the generated solar power to operate an electric motor driven piston compressor. The compressed air is then stored under pressure and supplied to a natural gas driven Capstone C30 MicroTurbine with attached electric power generator. The compressed air facilitates the turbine’s rotor-blade operated compression stage resulting in direct energy savings. A series of mathematical models have been developed. To evaluate the feasibility and energy efficiency improvements, the experimental and simulation results indicated that 127.8 watts of peak power was delivered at 17.5 Volts and 7.3 Amps from each solar panel. The average power generation over a 24-hour time period from 115 panels was 15 kW DC or 6 kW of AC power at 208/240 VAC and 25 Amps from the inverter. This electrical power could run a 5.2 kW reciprocating compressor for approximately 5 hours storing 1,108 kg of air at a 1.2 MPa pressure. A case study indicated that the microturbine, when operated without compressed air storage, consumed 11.2 kg of gaseous propane for 30 kW·hr of energy generation. In contrast, the microturbine operated in conjunction with solar supplied air storage could generate 50.8 kW·hr of electrical energy for a similar amount of fuel consumption. The study indicated an 8.1% efficiency improvement in energy generated by the system which utilized compressed air energy storage over the traditional approach.


Sign in / Sign up

Export Citation Format

Share Document