scholarly journals Flexible Sample Environments for the Investigation of Soft Matter at the European Spallation Source: Part III—The Macroscopic Foam Cell

2021 ◽  
Vol 11 (11) ◽  
pp. 5116
Author(s):  
Matthias Kühnhammer ◽  
Tobias Widmann ◽  
Lucas P. Kreuzer ◽  
Andreas J. Schmid ◽  
Lars Wiehemeier ◽  
...  

The European Spallation Source (ESS), which is under construction in Lund (Sweden), will be the leading and most brilliant neutron source and aims at starting user operation at the end of 2023. Among others, two small angle neutron scattering (SANS) machines will be operated. Due to the high brilliance of the source, it is important to minimize the downtime of the instruments. For this, a collaboration between three German universities and the ESS was initialized to develop and construct a unified sample environment (SE) system. The main focus was set on the use of a robust carrier system for the different SEs, which allows setting up experiments and first prealignment outside the SANS instruments. This article covers the development and construction of a SE for SANS experiments with foams, which allows measuring foams at different drainage states and the control of the rate of foam formation, temperature, and measurement position. The functionality under ESS conditions was tested and neutron test measurement were carried out.

2021 ◽  
Vol 11 (9) ◽  
pp. 4036
Author(s):  
Tobias Widmann ◽  
Lucas P. Kreuzer ◽  
Matthias Kühnhammer ◽  
Andreas J. Schmid ◽  
Lars Wiehemeier ◽  
...  

The FlexiProb project is a joint effort of three soft matter groups at the Universities of Bielefeld, Darmstadt, and Munich with scientific support from the European Spallation Source (ESS), the small-K advanced diffractometer (SKADI) beamline development group of the Jülich Centre for Neutron Science (JCNS), and the Heinz Maier-Leibnitz Zentrum (MLZ). Within this framework, a flexible and quickly interchangeable sample carrier system for small-angle neutron scattering (SANS) at the ESS was developed. In the present contribution, the development of a sample environment for the investigation of soft matter thin films with grazing-incidence small-angle neutron scattering (GISANS) is introduced. Therefore, components were assembled on an optical breadboard for the measurement of thin film samples under controlled ambient conditions, with adjustable temperature and humidity, as well as the optional in situ recording of the film thickness via spectral reflectance. Samples were placed in a 3D-printed spherical humidity metal chamber, which enabled the accurate control of experimental conditions via water-heated channels within its walls. A separately heated gas flow stream supplied an adjustable flow of dry or saturated solvent vapor. First test experiments proved the concept of the setup and respective component functionality.


2021 ◽  
Vol 92 (3) ◽  
pp. 033903
Author(s):  
Dominic W. Hayward ◽  
Germinal Magro ◽  
Anja Hörmann ◽  
Sylvain Prévost ◽  
Ralf Schweins ◽  
...  

2008 ◽  
Vol 41 (1) ◽  
pp. 161-166 ◽  
Author(s):  
Annie Brûlet ◽  
Vincent Thévenot ◽  
Didier Lairez ◽  
Sébastien Lecommandoux ◽  
Willy Agut ◽  
...  

The main characteristics of the very small angle neutron scattering spectrometer (VSANS) under construction at the Laboratoire Léon Brillouin are a multibeam pinhole collimator converging onto an image plate detector. By combining tiny collimation (diaphragms of around 1 or 2 mm in diameter) with the small pixel size of the detector (0.15 × 0.15 mm), very high resolution measurements can be achieved. The resolution function of the instrument contains a contribution from gravity, which is reduced by the intermediate masks of the collimator. Owing to the relatively short length of the VSANS instrument (around 14 m), this effect remains weak, in good agreement with the predictions. With a prototype multibeam collimator, an incident wavelength of 0.9 nm and the detector located at 6 m from the sample, it is possible to accessqvalues as low as 4 × 10−3 nm−1with very highqresolution. Promising preliminary experiments with highqresolution are reported, which open up new fields to the SANS technique.


Soft Matter ◽  
2015 ◽  
Vol 11 (27) ◽  
pp. 5580-5581
Author(s):  
Richard M. Epand ◽  
Diana Bach ◽  
Ellen Wachtel

As consistently described in the literature, the solubility limit of cholesterol in phospholipid bilayers is defined by its phase separation and crystallization.


2018 ◽  
Vol 13 (07) ◽  
pp. P07016-P07016 ◽  
Author(s):  
K. Kanaki ◽  
M. Klausz ◽  
T. Kittelmann ◽  
G. Albani ◽  
E. Perelli Cippo ◽  
...  

2021 ◽  
Vol 11 (12) ◽  
pp. 5566
Author(s):  
Volker S. Urban ◽  
William T. Heller ◽  
John Katsaras ◽  
Wim Bras

With the promise of new, more powerful neutron sources in the future, the possibilities for time-resolved neutron scattering experiments will improve and are bound to gain in interest. While there is already a large body of work on the accurate control of temperature, pressure, and magnetic fields for static experiments, this field is less well developed for time-resolved experiments on soft condensed matter and biomaterials. We present here an overview of different sample environments and technique combinations that have been developed so far and which might inspire further developments so that one can take full advantage of both the existing facilities as well as the possibilities that future high intensity neutron sources will offer.


2021 ◽  
Vol 11 (9) ◽  
pp. 4089
Author(s):  
Andreas Josef Schmid ◽  
Lars Wiehemeier ◽  
Sebastian Jaksch ◽  
Harald Schneider ◽  
Arno Hiess ◽  
...  

As part of the development of the new European Spallation Source (ESS) in Lund (Sweden), which will provide the most brilliant neutron beams worldwide, it is necessary to provide different sample environments with which the potential of the new source can be exploited as soon as possible from the start of operation. The overarching goal of the project is to reduce the downtimes of the instruments related to changing the sample environment by developing plug and play sample environments for different soft matter samples using the same general carrier platform and also providing full software integration and control by just using unified connectors. In the present article, as a part of this endeavor, the sample environment for in situ SANS and dynamic light scattering measurements is introduced.


2015 ◽  
Vol 48 (4) ◽  
pp. 1242-1253 ◽  
Author(s):  
Sohrab Abbas ◽  
Sylvain Désert ◽  
Annie Brûlet ◽  
Vincent Thevenot ◽  
Patrice Permingeat ◽  
...  

This article reports the design of a versatile multislit-based very small angle neutron scattering (VSANS) instrument working either as a dedicated instrument or as an add-on for any small-angle neutron scattering machine like the proposed SANS instrument, SKADI, at the future European Spallation Source. The use of multiple slits as a VSANS collimator for the time-of-flight techniques has been validated usingMcStassimulations. Various instrument configurations to achieve different minimum wavevector transfers in scattering experiments are proposed. The flexibility of the multislit VSANS instrument concept is demonstrated by showing the possibility of instrument length scaling for the first time, allowing access to varying minimum wavevector transfers with the same multislit setup. These options can provide smooth access to minimum wavevector transfers lower than ∼4 × 10−5 Å−1and an overlapping of wavevector coverage with normal SANS mode,e.g.with the SKADI wavevector range of 10−3–1.1 Å−1. Such an angularly well defined and intense neutron beam will allow faster SANS studies of objects larger than 1 µm. Calculations have also been carried out for a radial collimator as an alternative to the multislit collimator setup. This extends the SANSQrange by an order of magnitude to 1 × 10−4 Å−1with much simpler alignment. The multislit idea has been realized experimentally by building a prototype at Laboratoire Leon Brillouin, Saclay, with cross-talk-free geometry. Feasibility studies were carried out by making VSANS measurements with single- and multislit collimators, and the results are compared with multiple-pinhole geometry using classical SANS analysis tools.


Sign in / Sign up

Export Citation Format

Share Document