scholarly journals Fourier Singular Values-Based False Data Injection Attack Detection in AC Smart-Grids

2021 ◽  
Vol 11 (12) ◽  
pp. 5706
Author(s):  
Moslem Dehghani ◽  
Taher Niknam ◽  
Mohammad Ghiasi ◽  
Pierluigi Siano ◽  
Hassan Haes Alhelou ◽  
...  

Cyber-physical threats as false data injection attacks (FDIAs) in islanded smart microgrids (ISMGs) are typical accretion attacks, which need urgent consideration. In this regard, this paper proposes a novel cyber-attack detection model to detect FDIAs based on singular value decomposition (SVD) and fast Fourier transform (FFT). Since new research are mostly focusing on FDIAs detection in DC systems, paying attention to AC systems attack detection is also necessary; hence, AC state estimation (SE) have been used in SI analysis and in considering renewable energy sources effect. Whenever malicious data are added into the system state vectors, vectors’ temporal and spatial datum relations might drift from usual operating conditions. In this approach, switching surface based on sliding mode controllers is dialyzed to regulate detailed FFT’s coefficients to calculate singular values. Indexes are determined according to the composition of FFT and SVD in voltage/current switching surface to distinguish the potential cyber-attack. This protection layout is presented for cyber-attack detection and is studied in various types of FDIA forms like amplitude and vector derivation of signals, which exchanged between agents such as smart sensor, control units, smart loads, etc. The prominent advantage of the proposed detection layout is to reduce the time (less than 10 milliseconds from the attack outset) in several kinds of case studies. The proposed method can detect more than 96% accuracy from 2967 sample tests. The performances of the method are carried out on AC-ISMG in MATLAB/Simulink environment.

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Moslem Dehghani ◽  
Mohammad Ghiasi ◽  
Taher Niknam ◽  
Abdollah Kavousi-Fard ◽  
Elham Tajik ◽  
...  

Author(s):  
Seyed Hossein Rouhani ◽  
Hamed Mojallali ◽  
Alfred Baghramian

Simultaneous investigation of demand response programs and false data injection cyber-attack are critical issues for the smart power system frequency regulation. To this purpose, in this paper, the output of the studied system is simultaneously divided into two subsystems: one part including false data injection cyder-attack and another part without cyder-attack. Then, false data injection cyber-attack and load disturbance are estimated by a non-linear sliding mode observer, simultaneously and separately. After that, demand response is incorporated in the uncertain power system to compensate the whole or a part of the load disturbance based on the available electrical power in the aggregators considering communication time delay. Finally, active disturbance rejection control is modified and introduced to remove the false data injection cyber-attack and control the uncompensated load disturbance. The salp swarm algorithm is used to design the parameters. The results of several simulation scenarios indicate the efficient performance of the proposed method.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 80778-80788 ◽  
Author(s):  
Hadis Karimipour ◽  
Ali Dehghantanha ◽  
Reza M. Parizi ◽  
Kim-Kwang Raymond Choo ◽  
Henry Leung

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 185938-185949
Author(s):  
T. Gopalakrishnan ◽  
D. Ruby ◽  
Fadi Al-Turjman ◽  
Deepak Gupta ◽  
Irina V. Pustokhina ◽  
...  

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 95109-95125 ◽  
Author(s):  
Jie Cao ◽  
Da Wang ◽  
Zhaoyang Qu ◽  
Mingshi Cui ◽  
Pengcheng Xu ◽  
...  

Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1326
Author(s):  
Guillermo Tapia-Tinoco ◽  
David Granados-Lieberman ◽  
David A. Rodriguez-Alejandro ◽  
Martin Valtierra-Rodriguez ◽  
Arturo Garcia-Perez

The electric spring (ES) is a contemporary device that has emerged as a viable alternative for solving problems associated with voltage and power stability in distributed generation-based smart grids (SG). In order to study the integration of ESs into the electrical network, the steady-state simulation models have been developed as an essential tool. Typically, these models require an equivalent electrical circuit of the in-test networks, which implies adding restrictions for its implementation in simulation software. These restrictions generate simplified models, limiting their application to specific scenarios, which, in some cases, do not fully apply to the needs of modern power systems. Therefore, a robust steady-state model for the ES is proposed in this work to adequately represent the power exchange of multiples ESs in radial micro-grids (µGs) and renewable energy sources regardless of their physical location and without the need of additional restrictions. For solving and controlling the model simulation, a modified backward–forward sweep method (MBFSM) is implemented. In contrast, the voltage control determines the operating conditions of the ESs from the steady-state solution and the reference voltages established for each ES. The model and algorithms of the solution and the control are validated with dynamic simulations. For the quasi-stationary case with distributed renewable generation, the results show an improvement higher than 95% when the ESs are installed. On the other hand, the MBFSM reduces the number of iterations by 34% on average compared to the BFSM.


Sign in / Sign up

Export Citation Format

Share Document