Cyber Attack Detection and Isolation for Smart Grids via Unknown Input Observer

Author(s):  
Yating Li ◽  
Jianjin Li ◽  
Xiaoyuan Luo ◽  
Xinyu Wang ◽  
Xinping Guan
IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 80778-80788 ◽  
Author(s):  
Hadis Karimipour ◽  
Ali Dehghantanha ◽  
Reza M. Parizi ◽  
Kim-Kwang Raymond Choo ◽  
Henry Leung

Author(s):  
Xiaoyuan Luo ◽  
Qian Yao ◽  
Xinyu Wang ◽  
Xinping Guan

2021 ◽  
Vol 11 (12) ◽  
pp. 5706
Author(s):  
Moslem Dehghani ◽  
Taher Niknam ◽  
Mohammad Ghiasi ◽  
Pierluigi Siano ◽  
Hassan Haes Alhelou ◽  
...  

Cyber-physical threats as false data injection attacks (FDIAs) in islanded smart microgrids (ISMGs) are typical accretion attacks, which need urgent consideration. In this regard, this paper proposes a novel cyber-attack detection model to detect FDIAs based on singular value decomposition (SVD) and fast Fourier transform (FFT). Since new research are mostly focusing on FDIAs detection in DC systems, paying attention to AC systems attack detection is also necessary; hence, AC state estimation (SE) have been used in SI analysis and in considering renewable energy sources effect. Whenever malicious data are added into the system state vectors, vectors’ temporal and spatial datum relations might drift from usual operating conditions. In this approach, switching surface based on sliding mode controllers is dialyzed to regulate detailed FFT’s coefficients to calculate singular values. Indexes are determined according to the composition of FFT and SVD in voltage/current switching surface to distinguish the potential cyber-attack. This protection layout is presented for cyber-attack detection and is studied in various types of FDIA forms like amplitude and vector derivation of signals, which exchanged between agents such as smart sensor, control units, smart loads, etc. The prominent advantage of the proposed detection layout is to reduce the time (less than 10 milliseconds from the attack outset) in several kinds of case studies. The proposed method can detect more than 96% accuracy from 2967 sample tests. The performances of the method are carried out on AC-ISMG in MATLAB/Simulink environment.


2021 ◽  
Vol 11 (16) ◽  
pp. 7228
Author(s):  
Edward Staddon ◽  
Valeria Loscri ◽  
Nathalie Mitton

With the ever advancing expansion of the Internet of Things (IoT) into our everyday lives, the number of attack possibilities increases. Furthermore, with the incorporation of the IoT into Critical Infrastructure (CI) hardware and applications, the protection of not only the systems but the citizens themselves has become paramount. To do so, specialists must be able to gain a foothold in the ongoing cyber attack war-zone. By organising the various attacks against their systems, these specialists can not only gain a quick overview of what they might expect but also gain knowledge into the specifications of the attacks based on the categorisation method used. This paper presents a glimpse into the area of IoT Critical Infrastructure security as well as an overview and analysis of attack categorisation methodologies in the context of wireless IoT-based Critical Infrastructure applications. We believe this can be a guide to aid further researchers in their choice of adapted categorisation approaches. Indeed, adapting appropriated categorisation leads to a quicker attack detection, identification, and recovery. It is, thus, paramount to have a clear vision of the threat landscapes of a specific system.


Sign in / Sign up

Export Citation Format

Share Document