scholarly journals A Robust Electric Spring Model and Modified Backward Forward Solution Method for Microgrids with Distributed Generation

Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1326
Author(s):  
Guillermo Tapia-Tinoco ◽  
David Granados-Lieberman ◽  
David A. Rodriguez-Alejandro ◽  
Martin Valtierra-Rodriguez ◽  
Arturo Garcia-Perez

The electric spring (ES) is a contemporary device that has emerged as a viable alternative for solving problems associated with voltage and power stability in distributed generation-based smart grids (SG). In order to study the integration of ESs into the electrical network, the steady-state simulation models have been developed as an essential tool. Typically, these models require an equivalent electrical circuit of the in-test networks, which implies adding restrictions for its implementation in simulation software. These restrictions generate simplified models, limiting their application to specific scenarios, which, in some cases, do not fully apply to the needs of modern power systems. Therefore, a robust steady-state model for the ES is proposed in this work to adequately represent the power exchange of multiples ESs in radial micro-grids (µGs) and renewable energy sources regardless of their physical location and without the need of additional restrictions. For solving and controlling the model simulation, a modified backward–forward sweep method (MBFSM) is implemented. In contrast, the voltage control determines the operating conditions of the ESs from the steady-state solution and the reference voltages established for each ES. The model and algorithms of the solution and the control are validated with dynamic simulations. For the quasi-stationary case with distributed renewable generation, the results show an improvement higher than 95% when the ESs are installed. On the other hand, the MBFSM reduces the number of iterations by 34% on average compared to the BFSM.

Author(s):  
B. Papkov ◽  
V. Osokin

Modern power supply systems that have distributed generation and are connected to the electric power system, renewable energy sources, and storage devices, require changes in the assessment of their reliability indices. The complexity of the energy, technological, and organizational structures of power systems with distributed generation does not allow the traditional concept of "failure" to be used to assess their reliability. Many technological solutions used in the distributed generation projects can become sources of vulnerabilities in the infrastructure of an intelligent electrical network. The study shows that power systems with distributed generation are the structures with overlapping service areas, which determines their specific features represented by an integral characteristic - efficiency. It characterizes the extent to which the use of distributed generation facilities in various operating conditions is feasible. The paper proposes an approach to quantifying the efficiency of such systems. The presented examples demonstrate the calculation of relatively simple power systems with the distributed generation that perform several tasks simultaneously.


Author(s):  
Ney Balderramo Velez ◽  
Lenin Cuenca Alava ◽  
Yolanda Llosas Albuerne ◽  
Julio Cesar Mera Maciás

In the presented work, an analysis of the use of artificial intelligence is proposed, as a way to solve the problems that arise in the daily work of electrical networks. By implementing the distributed generation with contributions from generating elements with the incorporation of renewable energy sources in them, as well as connection of consumer elements in different points of the network, conflicts are established regarding the transmission of electrical energy in the different scenarios. It is therefore essential to manage the direction in which energy is transmitted in the network, as well as the organized connection and disconnection of each of the elements, the creation of intelligent decision-making elements, to what is called Intelligent Electrical Network (Smart Grids). For the decision making it is proposed to use artificial intelligence techniques, and according to the experience in the work of transmission lines it has been selected to work with the topology of radial-based neural networks to undertake the different tasks regarding the intelligent decision. Index Terms— electrical networks, smart grids, distributed generation, transmission line, renewable energy


2020 ◽  
Vol 220 ◽  
pp. 01034
Author(s):  
Muhayo Toshkhodzhaeva ◽  
Elena Gracheva ◽  
Okhunbobo Rahimov ◽  
Shakhboz Dadabaev

This article provides a brief overview of the existing problems of managing the electric power system, taking into account the sources of distributed generation. The features of centralized and decentralized power supply systems are considered from the point of view of changing operating conditions, in particular, eliminating the consequences of technological violations. The main goals of the electric power system management have been determined, regardless of the number of sources and the category of consumers in terms of power supply reliability, as well as in emergency and post-emergency modes. The basic principles and sequence of power system management are presented. An algorithm for the efficiency of operation and dispatch control of the power system is considered, methods for ensuring the selective operation of relay protection and automation devices in the presence of several generating capacities are presented. A fragment of an electrical network with four energy sources is shown and the main measures to ensure its normal functioning are proposed.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2361
Author(s):  
Josué Aarón López-Leyva ◽  
Carolina Barrera-Silva ◽  
Luisa Fernanda Sarmiento-Leyva ◽  
María Fernanda González-Romero

This manuscript presents the analysis of a real distributed generation network considering the integration of Active Buildings that meet the Passivhaus standard criteria at the Premium level, as a base case model. The novelty aspect presented in this paper is the interconnection of Active Buildings based on the Passivhaus standard at the Premium level with the National Electricity System (particularly, in Mexico’s North Baja California region) to mitigate the energy deficit. The objective of the proposal grid is to reduce the energy deficit (≈600 MW) due to the high energy demand in the region and the reduced energy generation through conventional and renewable energy sources. In a particular way, the energy rehabilitation of some buildings was analyzed with the aim of reducing the energy demand of each one and then adding energy generation through renewable sources. As a result, all Passivhaus standard criteria (i.e., heating and cooling demands, heating and cooling loads, among others) were met. Regarding the Active Buildings performance in each distributed generation circuit, an overall installed power capacity of ≈2.3 MW was obtained, which corresponds to ≈19.1% of the maximum capacity, and ≈34.30% of the recommended integration capacity. In addition, adequate results were obtained related to the import and export of energy between distributed generation circuits, i.e., the energy exchange is up to ≈106.8 kW, intending to reduce the energy contribution of the utility electrical network. Finally, the analysis of the Active Buildings showed an increase in the net generation forecast, up to ≈2.25 MW.


2018 ◽  
Vol 58 ◽  
pp. 02015
Author(s):  
Yekaterina Popova ◽  
Oleg Voitov ◽  
Lyudmila Semenova

The paper presents an algorithm to calculate feasible steady-state conditions of an electrical network. A distinctive feature of the calculation is the consideration of constraints on the temperature of bare conductor and the clearance of a controlled span of overhead line. This consideration is based on forming and solving an equation of conductor heat balance to calculate the conductor temperature depending on the current flowing through the conductor and environmental factors, including the actual values of air pressure and air temperature. The paper presents the results of numerical calculations performed for individual overhead lines and for a test 16-node scheme of electrical network. The results illustrate the algorithm performance and the importance of considering the above constraints.


2021 ◽  
Vol 11 (12) ◽  
pp. 5706
Author(s):  
Moslem Dehghani ◽  
Taher Niknam ◽  
Mohammad Ghiasi ◽  
Pierluigi Siano ◽  
Hassan Haes Alhelou ◽  
...  

Cyber-physical threats as false data injection attacks (FDIAs) in islanded smart microgrids (ISMGs) are typical accretion attacks, which need urgent consideration. In this regard, this paper proposes a novel cyber-attack detection model to detect FDIAs based on singular value decomposition (SVD) and fast Fourier transform (FFT). Since new research are mostly focusing on FDIAs detection in DC systems, paying attention to AC systems attack detection is also necessary; hence, AC state estimation (SE) have been used in SI analysis and in considering renewable energy sources effect. Whenever malicious data are added into the system state vectors, vectors’ temporal and spatial datum relations might drift from usual operating conditions. In this approach, switching surface based on sliding mode controllers is dialyzed to regulate detailed FFT’s coefficients to calculate singular values. Indexes are determined according to the composition of FFT and SVD in voltage/current switching surface to distinguish the potential cyber-attack. This protection layout is presented for cyber-attack detection and is studied in various types of FDIA forms like amplitude and vector derivation of signals, which exchanged between agents such as smart sensor, control units, smart loads, etc. The prominent advantage of the proposed detection layout is to reduce the time (less than 10 milliseconds from the attack outset) in several kinds of case studies. The proposed method can detect more than 96% accuracy from 2967 sample tests. The performances of the method are carried out on AC-ISMG in MATLAB/Simulink environment.


Author(s):  
Kamalleswaran Subramaniam ◽  
Wan Saiful-Islam Wan Salim

This paper discusses the evaluation of the energy recovery potential of turboshaft separated (decoupled) electric turbocharger and its boosting capability in a spark-ignition engine through simulation-based work and comparing it to a conventional turbocharged engine in terms of fuel consumption. The main objective of this study is to evaluate the amount of energy that can be recovered over a steady state full-load operating conditions and boosting capabilities from a decoupled electric turbocharger of an SI engine using a 1-D engine simulation software. The electric turbocharged system includes two motors and a battery pack to store the recovered electrical energy. Gt-Power engine simulation software was used to model both engines and utilizes each of the components described earlier. The conventional turbocharged engine is first simulated to obtain its performance characteristics. An electric turbocharger is then modelled by separating the turbine from the compressor. The turbine is connected to the generator and battery, whereas the compressor is connected to the motor. This electrically turbocharged engine was modelled at full load and controlled to produce the same brake power (kW) and brake torque (Nm) properties as the similarly sized conventional turbocharged engine. This step was necessary to investigate the effect an electrical turbocharger without a wastegate has on the engine’s BSFC and determine the energy that can be recovered by the electrical boosting components, and cycle-averaged fuel consumption was evaluated. The evaluation of energy recovered from the electrically turbocharged engine from the analysis can assessed in full-load steady state conditions that can be useful for research in part-load and transient studies involving the decoupled electrical turbocharger. The study revealed that a maximum of 21.6 kW of electrical power can be recovered from the decoupled electrical turbocharger system, whereas 2.6% increase in fuel consumption can be observed at 5000 rpm engine speed.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3433 ◽  
Author(s):  
Ibrahim Ahmad ◽  
Ghaeth Fandi ◽  
Zdenek Muller ◽  
Josef Tlusty

The increased penetration of renewable energy sources in the electrical grid, due to the rapid increase of power demand and the need of diverse energy sources, has made distributed generation (DG) units an essential part of the modern electrical grid. The integration of many DG units in smart grids requires control and coordination between them, and the grid to maximize the benefits of the DG units. Smart grids and modern electronic devices require high standards of power quality, especially voltage quality. In this paper, a new methodology is presented to improve the voltage quality and power factor in smart grids. This method depends on using voltage variation and admittance values as inputs of a controller that controls the reactive power generation in all DG units. The results show that the controller is efficient in improving the voltage quality and power factor. Real data from an electrical network have been used in the simulation model in MATLAB Simulink to test the new approach.


2015 ◽  
Vol 16 (6) ◽  
pp. 549-557 ◽  
Author(s):  
Shivkumar Venkatraman Iyer ◽  
Bin Wu ◽  
Yunwei Li ◽  
Birendra Singh

Abstract This paper proposes a simplified mathematical model to predict the impact of connection of Distributed Generators (DGs) to the ac grid. The model allows the user to examine the fluctuations in the magnitude of voltages at different nodes in the distribution system. In order to use the model, the user does not require a commercial simulation software making it a handy tool for a practicing engineer. Analysis has been presented to describe how the detailed mathematical model of the system is reduced using elementary matrix manipulation techniques to obtain the final simplified mathematical model. Simulation results are presented to verify the mathematical model with a ring distribution system with three DGs connected to it and the results validate those attained from the mathematical model.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (8) ◽  
pp. 65-78 ◽  
Author(s):  
W.B.A. (SANDY) SHARP ◽  
W.J. JIM FREDERICK ◽  
JAMES R. KEISER ◽  
DOUGLAS L. SINGBEIL

The efficiencies of biomass-fueled power plants are much lower than those of coal-fueled plants because they restrict their exit steam temperatures to inhibit fireside corrosion of superheater tubes. However, restricting the temperature of a given mass of steam produced by a biomass boiler decreases the amount of power that can be generated from this steam in the turbine generator. This paper examines the relationship between the temperature of superheated steam produced by a boiler and the quantity of power that it can generate. The thermodynamic basis for this relationship is presented, and the value of the additional power that could be generated by operating with higher superheated steam temperatures is estimated. Calculations are presented for five plants that produce both steam and power. Two are powered by black liquor recovery boilers and three by wood-fired boilers. Steam generation parameters for these plants were supplied by industrial partners. Calculations using thermodynamics-based plant simulation software show that the value of the increased power that could be generated in these units by increasing superheated steam temperatures 100°C above current operating conditions ranges between US$2,410,000 and US$11,180,000 per year. The costs and benefits of achieving higher superheated steam conditions in an individual boiler depend on local plant conditions and the price of power. However, the magnitude of the increased power that can be generated by increasing superheated steam temperatures is so great that it appears to justify the cost of corrosion-mitigation methods such as installing corrosion-resistant materials costing far more than current superheater alloys; redesigning biomassfueled boilers to remove the superheater from the flue gas path; or adding chemicals to remove corrosive constituents from the flue gas. The most economic pathways to higher steam temperatures will very likely involve combinations of these methods. Particularly attractive approaches include installing more corrosion-resistant alloys in the hottest superheater locations, and relocating the superheater from the flue gas path to an externally-fired location or to the loop seal of a circulating fluidized bed boiler.


Sign in / Sign up

Export Citation Format

Share Document