scholarly journals Control of a Variable Blade Pitch Wind Turbine Subject to Gust Wind and Actuators Saturation

2021 ◽  
Vol 11 (17) ◽  
pp. 7865
Author(s):  
Chokri Sendi

This paper examines the dynamics and control of a variable blade pitch wind turbine during extreme gust wind and subject to actuators saturation. The mathematical model of the wind turbine is derived using the Lagrange dynamics. The controller is formulated using the Takagi–Sugeno fuzzy model and utilizes the parallel distributor compensator to obtain the feedback control gain. The controller’s objective is to obtain the generator electromagnetic torque and the blade pitch angle to attenuate the external disturbances. The (T–S) fuzzy controller with disturbances rejection properties is developed using the linear matrix inequalities technic and solved as an optimization problem. The efficacy of the proposed (T–S) fuzzy controller is illustrated via numerical simulations.

Author(s):  
Hugang Han ◽  

In general, when using the Takagi-Sugeno (T-S) fuzzy model to develop a control system, the state feedback control gain can be obtained by solving some linear matrix inequalities (LMIs). In this paper, we consider a class of nonlinear systems with input constraint (saturation). To obtain the control gain, we require to employ certain extra LMIs besides the general ones. As a result, all the LMIs are more conservative. At the same time, one of the extra LMIs confines the initial state to a region, which is referred to as an ellipsoid, and is relevant to a matrix variable in the LMIs. Therefore, the goals of this paper are: 1) making the ellipsoid as large as possible so that the initial state can be confined to the region easily and; 2) making all the LMIs more feasible to obtain the control gain.


2014 ◽  
Vol 24 (4) ◽  
pp. 785-794 ◽  
Author(s):  
Wudhichai Assawinchaichote

Abstract This paper examines the problem of designing a robust H∞ fuzzy controller with D-stability constraints for a class of nonlinear dynamic systems which is described by a Takagi-Sugeno (TS) fuzzy model. Fuzzy modelling is a multi-model approach in which simple sub-models are combined to determine the global behavior of the system. Based on a linear matrix inequality (LMI) approach, we develop a robust H∞ fuzzy controller that guarantees (i) the L2-gain of the mapping from the exogenous input noise to the regulated output to be less than some prescribed value, and (ii) the closed-loop poles of each local system to be within a specified stability region. Sufficient conditions for the controller are given in terms of LMIs. Finally, to show the effectiveness of the designed approach, an example is provided to illustrate the use of the proposed methodology.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaona Song ◽  
Mi Wang ◽  
Shuai Song ◽  
Jingtao Man

This paper studies fuzzy controller design problem for a class of nonlinear switched distributed parameter systems (DPSs) subject to time-varying delay. Initially, the original nonlinear DPSs are accurately described by Takagi-Sugeno fuzzy model in a local region. On the basis of parallel distributed compensation technique, mode-dependent fuzzy proportional and fuzzy proportional-spatial-derivative controllers are constructed, respectively. Subsequently, using single Lyapunov-Krasovskii functional and some matrix inequality methods, sufficient conditions that guarantee the stability and dissipativity of the closed-loop systems are presented in the form of linear matrix inequalities, which allow the control gain matrices to be easily obtained. Finally, numerical examples are provided to demonstrate the validity of the designed controllers.


2007 ◽  
Vol 18 (07) ◽  
pp. 1095-1105 ◽  
Author(s):  
XINGWEN LIU ◽  
XIN GAO

Studied in this paper is the control problem of hyperchaotic systems. By combining Takagi–Sugeno (T–S) fuzzy model with parallel distributed compensation design technique, we propose a delay-dependent control criterion via pure delayed state feedback. Because the result is expressed in terms of linear matrix inequalities (LMIs), it is quite convenient to check in practice. Based on this criterion, a procedure is provided for designing fuzzy controller for such systems. This method is a universal one for controlling continuous hyperchaotic systems. As illustrated by its application to hyperchaotic Chen's system, the controller design is quite effective.


Author(s):  
Xiuchun Luan ◽  
Jie Zhou ◽  
Yu Zhai

A state differential feedback control system based Takagi-Sugeno (T-S) fuzzy model is designed for load-following operation of nonlinear nuclear reactor whose operating points vary within a wide range. Linear models are first derived from the original nonlinear model on several operating points. Next the fuzzy controller is designed via using the parallel distributed compensation (PDC) scheme with the relative neutron density at the equilibrium point as the premise variable. Last the stability analysis is given by means of linear matrix inequality (LMI) approach, thus the control system is guaranteed to be stable within a large range. The simulation results demonstrate that the control system works well over a wide region of operation.


2020 ◽  
Vol 71 (1) ◽  
pp. 1-10
Author(s):  
Miroslav Pokorný ◽  
Tomáš Dočekal ◽  
Danica Rosinová

AbstractUsing the principles of Takagi-Sugeno fuzzy modelling allows the integration of flexible fuzzy approaches and rigorous mathematical tools of linear system theory into one common framework. The rule-based T-S fuzzy model splits a nonlinear system into several linear subsystems. Parallel Distributed Compensation (PDC) controller synthesis uses these T-S fuzzy model rules. The resulting fuzzy controller is nonlinear, based on fuzzy aggregation of state controllers of individual linear subsystems. The system is optimized by the linear quadratic control (LQC) method, its stability is analysed using the Lyapunov method. Stability conditions are guaranteed by a system of linear matrix inequalities (LMIs) formulated and solved for the closed loop system with the proposed PDC controller. The additional GA optimization procedure is introduced, and a new type of its fitness function is proposed to improve the closed-loop system performance.


2020 ◽  
Vol 9 (3) ◽  
pp. 63-99
Author(s):  
Iqbal Ahammed A.K. ◽  
Mohammed Fazle Azeem

Most of the systems in the industry contain extreme non-linearity and uncertainties, which are hard to design and control utilizing general nonlinear systems. To conquer this sort of troubles, different plans have been produced in the most recent two decades, among which a popular methodology is Takagi-Sugeno fuzzy control. In this article, we present robust stabilization and control of Takagi-Sugeno (T-S) fuzzy systems with parameter uncertainties and disturbances. Initially, Takagi and Sugeno (TS) fuzzy model is used to represent a nonlinear system. Based on this T-S fuzzy model, fuzzy controller design schemes for state feedback and output feedback is also developed. Then, necessary conditions are derived for robust stabilization in the intelligence of Lyapunov asymptotic stability and are expressed in the arrangement of linear matrix inequalities (LMIs). The proposed system is implemented in the working platform of MATLAB and the simulation results are provided to illustrate the effectiveness of the proposed methods.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Zhenyu Zhu ◽  
Zhanshan Zhao ◽  
Haoliang Cui ◽  
Fengdong Shi

This paper is based on the Takagi-Sugeno (T-S) fuzzy models to construct a coronary artery system (CAS) T-S fuzzy controller and considers the uncertainties of system state parameters in CAS. We propose the fuzzy model of CAS with uncertainties. By using T-S fuzzy model of CAS and the use of parallel distributed compensation (PDC) concept, the same fuzzy set is assigned to T-S fuzzy controller. Based on this, a PDC controller whose fuzzy rules correspond to the fuzzy model is designed. By constructing a suitable Lyapunov-Krasovskii function (LKF), the stability conditions of the linear matrix inequality (LMI) are exported. Simulation results show that the method proposed in this paper is correct and effective and has certain practical significance.


Author(s):  
Ali Sghaier Tlili

The objective of this paper is to develop a robust decentralized observer-based feedback model reference tracking control approach for a class of nonlinear disturbed interconnected systems. The proposed H∞ control and observation design method is formulated within an optimization problem involving linear matrix inequalities (LMIs), efficiently solved by a one-step LMI procedure, to compute the decentralized observation and control gain matrices of each subsystem, and to attenuate the external disturbances affecting the subsystems by minimizing a H∞ performance criterion. A numerical simulation is highlighted on a power system with three-interconnected machines to demonstrate the effectiveness of the developed control approach despite the interconnections between different generators, nonlinearities in the system, and external disturbances.


Author(s):  
Li Junmin ◽  
Li Yuting

This paper addresses the problems of the robust stability and stabilization for fractional order systems based on the uncertain Takagi-Sugeno fuzzy model. A sufficient and necessary condition of asymptotical stability for fractional order uncertain T-S fuzzy model is given, and a parallel distributed compensate fuzzy controller is designed to asymptotically stabilize the model. The results are obtained in terms of linear matrix inequalities. Finally, a numerical example and fractional order Van der Pol system are given to show the effectiveness of our results.


Sign in / Sign up

Export Citation Format

Share Document