scholarly journals Effect of Unaware Clock Manipulation on Pacing Strategy and Performance in Recreational Athletes

2021 ◽  
Vol 11 (17) ◽  
pp. 8062
Author(s):  
Augusto Terra ◽  
Dailson Paulucio ◽  
Marco Machado ◽  
David J. Bishop ◽  
Alexander J. Koch ◽  
...  

It is unclear how athletes regulate their performance prior and during exercise when deceptive methods are applied. Therefore, the aim of this study was to test if time manipulation can influence pacing strategy and running performance. Ten recreationally active subjects were informed they would complete four 60-min time trials only with time feedback. The first session was a familiarization trial (60-min), and in the following three sessions, the time feedback was modified: normal chronometer (NC—60 min.), 10% faster (Faster chronometer—FC—54 min.), and 10% slower (slower chronometer—SC—66 min.). Total distance was different between conditions, while average of total speed, Heart Rate, oxygen consumption, and Rate of Perceived Exertion were similar (p > 0.05). A slow start pacing strategy was adopted in all conditions and did not differ between conditions when averaged across the session; however, when analyzing the first and final 10 min of the session, differences were found between conditions. Finally, the observed time was an important determinant of the regulation of exercise intensity, because, although the pacing strategy adopted in all conditions was regulated according to previous exercise information, adjustments were made in the initial (NC) and final (FC) phases of the trials.

2020 ◽  
Vol 15 (4) ◽  
pp. 483-488 ◽  
Author(s):  
Philip Hurst ◽  
Lieke Schipof-Godart ◽  
Florentina Hettinga ◽  
Bart Roelands ◽  
Chris Beedie

Purpose: To investigate the placebo effect of caffeine on pacing strategy and performance over 1000-m running time trials using a balanced placebo design. Methods: Eleven well-trained male middle-distance athletes performed seven 1000-m time trials (1 familiarization, 2 baseline, and 4 experimental). Experimental trials consisted of the administration of 4 randomized treatments: informed caffeine/received caffeine, informed caffeine/received placebo, informed placebo/received caffeine, and informed placebo/received placebo. Split times were recorded at 200, 400, 600, 800, and 1000 m, and peak heart rate and rating of perceived exertion were recorded at the completion of the trial. Results: Relative to baseline, participants ran faster during informed caffeine/received caffeine (d = 0.42) and informed caffeine/received placebo (d = 0.43). These changes were associated with an increased pace during the first half of the trial. No differences were shown in pacing or performance between baseline and the informed placebo/received caffeine (d = 0.21) and informed placebo/received placebo (d = 0.10). No differences were reported between treatments for peak heart rate (η2 = .084) and rating of perceived exertion (η2 = .009). Conclusions: The results indicate that the effect of believing to have ingested caffeine improved performance to the same magnitude as actually receiving caffeine. These improvements were associated with an increase in pace during the first half of the time trial.


2020 ◽  
pp. 1-5
Author(s):  
Megan Wagner ◽  
Kevin D. Dames

Context: Bodyweight-supporting treadmills are popular rehabilitation tools for athletes recovering from impact-related injuries because they reduce ground reaction forces during running. However, the overall metabolic demand of a given running speed is also reduced, meaning athletes who return to competition after using such a device in rehabilitation may not be as fit as they had been prior to their injury. Objective: To explore the metabolic effects of adding incline during bodyweight-supported treadmill running. Design: Cross-sectional. Setting: Research laboratory. Participants: Fourteen apparently healthy, recreational runners (6 females and 8 males; 21 [3] y, 1.71 [0.08] m, 63.11 [6.86] kg). Interventions: The participants performed steady-state running trials on a bodyweight-supporting treadmill at 8.5 mph. The control condition was no incline and no bodyweight support. All experimental conditions were at 30% bodyweight support. The participants began the sequence of experimental conditions at 0% incline; this increased to 1%, and from there on, 2% incline increases were introduced until a 15% grade was reached. Repeated-measures analysis of variance was used to compare all bodyweight-support conditions against the control condition. Main Outcome Measures: Oxygen consumption, heart rate, and rating of perceived exertion. Results: Level running with 30% bodyweight support reduced oxygen consumption by 21.6% (P < .001) and heart rate by 12.0% (P < .001) compared with the control. Each 2% increase in incline with bodyweight support increased oxygen consumption by 6.4% and heart rate by 3.2% on average. A 7% incline elicited similar physiological measures as the unsupported, level condition. However, the perceived intensity of this incline with bodyweight support was greater than the unsupported condition (P < .001). Conclusions: Athletes can maintain training intensity while running on a bodyweight-supporting treadmill by introducing incline. Rehabilitation programs should rely on quantitative rather than qualitative data to drive exercise prescription in this modality.


2020 ◽  
Vol 4 (01) ◽  
pp. E27-E31
Author(s):  
Eric Viana ◽  
David J Bentley ◽  
Heather M. Logan-Sprenger

AbstractThe purpose of this study was to evaluate the relationship between: 1) laboratory-determined cycling peak oxygen consumption (VO2max) and AS performance in a new underwater swim test (UWST), and 2) cycling VO2max and ventilatory threshold (VT) in cycling and performance score during a simulated AS solo routine. Trained artistic swimmers (n=15, 15.8±0.8 yrs., height: 169.1±5.4 cm, body mass: 57.1±6.3 kg) completed (1) a maximal incremental cycle test to exhaustion to determine VO2max, (2) the UWST which comprised 275 m of freestyle and underwater breaststroke, and (3) a simulated solo competition where artistic swimming elements were evaluated by five FINA judges. There was a significant correlation between mean element score and (i) VO2max (48±4 mL. kg.min−1, r=0.44, p=0.05), and (ii) UWST (r=−0.64, p=0.005). However, there was an insignificant relationship between cycling ventilatory threshold and mean element score (r=–0.36, p=0.10). In addition, the results demonstrate a significant relationship between HR at the ventilatory threshold and peak HR of the UWST (r=–0.64, p=0.014). The results of this study demonstrate that VO2max is an important determinant of AS performance. In addition, the UWST appears to be a useful indicator of AS performance.


2017 ◽  
Vol 31 (3) ◽  
pp. 630-637
Author(s):  
Evan C. Johnson ◽  
Riana R. Pryor ◽  
Douglas J. Casa ◽  
Lindsay A. Ellis ◽  
Carl M. Maresh ◽  
...  

2002 ◽  
Vol 95 (3_suppl) ◽  
pp. 1047-1062 ◽  
Author(s):  
Mee-Lee Leung ◽  
Pak-Kwong Chung ◽  
Raymond W. Leung

This study evaluated the validity and reliability of the Chinese-translated (Cantonese) versions of the Borg 6–20 Rating of Perceived Exertion (RPE) scale and the Children's Effort Rating Table (CERT) during continuous incremental cycle ergometry with 10- to 11-yr.-old Hong Kong school children. A total of 69 children were randomly assigned, with the restriction of groups being approximately equal, to two groups using the two scales, CERT ( n = 35) and RPE ( n = 34). Both groups performed two trials of identical incremental continuous cycling exercise (Trials 1 and 2) 1 wk. apart for the reliability test. Objective measures of exercise intensity (heart rate, absolute power output, and relative oxygen consumption) and the two subjective measures of effort were obtained during the exercise. For both groups, significant Pearson correlations were found for perceived effort ratings correlated with heart rate ( rs ≥ .69), power output ( rs ≥ .75), and oxygen consumption ( rs ≥ .69). In addition, correlations for CERT were consistently higher than those for RPE. High test-retest intraclass correlations were found for both the effort ( R = .96) and perceived exertion ( R = 89) groups, indicating that the scales were reliable. In conclusion, the CERT and RPE scales, when translated into Cantonese, are valid and reliable measures of exercise intensity during controlled exercise by children. The Effort rating may be better than the Perceived Exertion scale as a measure of perceived exertion that can be more validly and reliably used with Hong Kong children.


2012 ◽  
Vol 7 (2) ◽  
pp. 121-129 ◽  
Author(s):  
Andrew Renfree ◽  
Julia West ◽  
Mark Corbett ◽  
Clare Rhoden ◽  
Alan St Clair Gibson

Purpose:This study examined the determinants of pacing strategy and performance during self-paced maximal exercise.Methods:Eight well-trained cyclists completed two 20-km time trials. Power output, rating of perceived exertion (RPE), positive and negative affect, and iEMG activity of the active musculature were recorded every 0.5 km, confidence in achieving preexercise goals was assessed every 5 km, and blood lactate and pH were measured postexercise. Differences in all parameters were assessed between fastest (FAST) and slowest (SLOW) trials performed.Results:Mean power output was significantly higher during the initial 90% of FAST, but not the final 10%, and blood lactate concentration was significantly higher and pH significantly lower following FAST. Mean iEMG activity was significantly higher throughout SLOW. Rating of perceived exertion was similar throughout both trials, but participants had significantly more positive affect and less negative affect throughout FAST. Participants grew less confident in their ability to achieve their goals throughout SLOW.Conclusions:The results suggest that affect may be the primary psychological regulator of pacing strategy and that higher levels of positivity and lower levels of negativity may have been associated with a more aggressive strategy during FAST. Although the exact mechanisms through which affect acts to influence performance are unclear, it may determine the degree of physiological disruption that can be tolerated, or be reflective of peripheral physiological status in relation to the still to be completed exercise task.


2008 ◽  
Vol 16 (1) ◽  
pp. 14-23 ◽  
Author(s):  
David R. Dolbow ◽  
Richard S. Farley ◽  
Jwa K. Kim ◽  
Jennifer L. Caputo

The purpose of this study was to examine the cardiovascular responses to water treadmill walking at 2.0 mph (3.2 km/hr), 2.5 mph (4.0 km/hr), and 3.0 mph (4.8 km/hr) in older adults. Responses to water treadmill walking in 92 °F (33 °C) water were compared with responses to land treadmill walking at 70 °F (21 °C) ambient temperature. After an accommodation period, participants performed 5-min bouts of walking at each speed on 2 occasions. Oxygen consumption (VO2), heart rate (HR), systolic blood pressure (SBP), and rating of perceived exertion (RPE) were significantly higher during therapeutic water treadmill walking than during land treadmill walking. Furthermore, VO2, HR, and RPE measures significantly increased with each speed increase during both land and water treadmill walking. SBP significantly increased with each speed during water treadmill walking but not land treadmill walking. Thus, it is imperative to monitor HR and blood pressure for safety during this mode of activity for older adults.


GYMNASIUM ◽  
2020 ◽  
Vol XXI (2 (Supplement)) ◽  
pp. 73
Author(s):  
Radenko Arsenijevic ◽  
Igor Ilic ◽  
Veroljub Stankovic

The aims of this study were (a) to assess the ability of the rating of perceived exertion (RPE) to predict performance loss (i.e. percent of drop in height relative to maximal height) of vertical jump session until voluntary failure, and (b) to determine the ability of RPE to describe the physiological demand of this session via heart rate monitor. Ten healthy men performed vertical jumps (counter-movement jump) until voluntary failure. Before session start maximal jump height for every subject was determined. Heart rate and RPE, separately for legs (RPE legs) and for breath (RPE breath), were recorded every ten jumps throughout the sessions. Results have shoved that RPE legs and performance loss have about 99% of same variance ( =0,9899; p<0,000), and RPE breath explains about 98% heart rate variance ( =0,9789; p<0,000) in vertical jump session until voluntary failure.


Sign in / Sign up

Export Citation Format

Share Document