scholarly journals Modal-Based Ground Motion Selection Method for the Nonlinear Response Time History Analysis of Reinforced Concrete Shear Wall Structures

2021 ◽  
Vol 11 (17) ◽  
pp. 8230
Author(s):  
Yang Liu

This paper presents a modification of the modal-based ground motion selection (MGMS) method for improving the reliability of the nonlinear response time history analysis (NLRHA) of reinforced concrete (RC) shear wall structures. The original MGMS procedure quantified the impact of frequency content combinations in the time domain (FCCTD) of input ground motions (IGMs) on the seismic response of building structures using the level of interaction of the first three modes induced by IGMs. However, previous research found that the first two modes have far larger modal mass coefficients than those of higher modes and dominate the vibration of the RC shear wall structures with a symmetric plan. Therefore, the MGMS procedure should be modified by employing the interaction of the first two modes induced by IGMs to properly account for the effect of the FCCTD of IGMs on the seismic response of structures. In the MGMS procedure for RC shear wall structures, seven IGMs that caused the most significant interactions of the first two modes were selected from a suite of twenty seed IGMs, which were chosen with a conventional spectra-matching-based IGMs selection procedure for the NLRHA of the structure. A comprehensive case study involving three RC shear walls with different heights was conducted to investigate the capability of the MGMS in selecting suitable IGMs for the NLRHA of RC shear wall structures. Sets of seed IGMs were selected, adopting conditional mean spectra and design spectra as the target spectra. It was found that the seismic demands computed using MGMS selected IGMs can ensure a more reliable and reasonable computation of seismic demands compared with conventional spectra-matching-based IGMs selection methods.

Author(s):  
Gareth J. Morris ◽  
Andrew J. Thompson ◽  
James N. Dismuke ◽  
Brendon A. Bradley

Nonlinear response history analysis (NLRHA), or so-called “nonlinear time history analysis”, is adopted by practicing structural engineers who implement performance-based seismic design and/or assessment procedures. One important aspect in obtaining reliable output from the NLRHA procedure is the input ground motion records. The underlying intention of ground motion selection and amplitude-scaling procedures is to ensure the input for NLRHA is representative of the ground shaking hazard level, for a given site and structure. The purpose of this paper is to highlight the salient limitations of the ground motion selection and scaling requirements in Sections 5.5 and 6.4 of the New Zealand (NZ) loading standard NZS 1170.5 (2004). From a NZ regulatory perspective; there is no specific framework for seismic hazard analysis and ground motion selection (thus self-regulation is the current norm). In contrast, NZS 1170.5 contains many prescriptive requirements for scaling and applying records which are challenging to satisfy in practice. Also discussed within, there are implications for more modern guidance documents in NZ, such as the 2017 “Assessment Guidelines” for existing buildings, which cite NZS 1170.5, a standard which is at least 16 years old (draft issued in 2002). To emphasize the above issues with NZS 1170.5, this paper presents a summary of the more contemporary approaches in the US standards ASCE 7-16 (new buildings) and ASCE 41-17 (existing buildings), along with some examples of the more stringent US requirements for Tall Buildings.


2020 ◽  
Vol 980 ◽  
pp. 231-238
Author(s):  
Xin Sheng Yin ◽  
Xiao Wei Liu

In order to respond to the construction policy of "economy, application, green and beauty" put forward by China in the new period, the assembly structure has gradually become the focus of attention in recent years. Compared with the traditional cast-in-place structure, the assembled structure is more in line with the requirements of energy-saving, material-saving, environmental protection, etc. Therefore, it is of great importance to further study the seismic performance of assembled structures. However, existing assembled shear wall structures often suffer from problems such as the joint position is difficult to construct because of its wet work, and strong component weak nodes often appear. The seismic performance of the joints needs to be further studied and so on. Aiming to solve above problems, a new type of pre-stressed constraint assembled shear wall structure was proposed by us. The structure is connected by pre-stressed tendon to shear wall, and there is no wet operation at the construction site, which is conductive to improving construction quality. When the earthquake occurs, the structure can increase its self-shock period by changing its own stiffness, so as to reduce the earthquake stress. Meanwhile, many conditions to improve the ductility of the structure do not need to be considered, thus avoid the waste of steel materials. Based on the time history analysis of cast-in-place shear wall structure model and pre-stressed shear wall structure model, the results of calculation show that: compared with cast-in-place shear wall structure, the pre-stressed shear wall structure can effectively reduce the earthquake effect by about 90%.


2010 ◽  
Vol 163-167 ◽  
pp. 4422-4428
Author(s):  
Yong Qin Lei ◽  
Yong Feng Du

Aimed to base-isolated building with large plane dimension, the change laws of seismic response for base-isolated building under spatial variable ground motions were researched. Firstly, the artificial spatial variable earthquake time histories were generated using spectral representation method based on code response spectrum. Then the 3-D FEM modal of one based-isolated building with large plane dimension was established and the seismic response of based-isolated building under spatially ground motion was studied by nonlinear time history analysis. The mitigation effects of based-isolated building with large plane dimension were compared each other at the cases of uniform excitation, non-uniform excitation considering only wave passage effect, non-uniform excitation considering both the wave passage effect and incoherence effect, multi-component uniform excitation, multi-component non-uniform excitation considering the wave passage effect and multi-component non-uniform excitation considering both the wave passage effect and incoherence effect. The results show that the seismic response of base-isolated structure with large plane dimension under the uniform excitation is relative safety. When the base-isolated building with large plane dimension is designed by time history analysis, the spatial variability of earthquake ground motion effects can be considered.


Author(s):  
Malik Atik ◽  
Marwan Sadek ◽  
Isam Shahrour

This chapter proposes a new single-run adaptive pushover method for the seismic assessment of shear wall structures. This method offers two main advantages: it does not require decomposing the structure in nonlinear domain and it avoids the pitfall of previous single-run adaptive pushover analyses in utilizing the modal combination in the determination of the applied loads instead of combining the response quantities induced by those loads in individual modes. After a brief review of the main adaptive pushover procedures, the proposed method is presented as well as its numerical implementation. The predictions of this method are compared to those of other recent adaptive pushover methods and as well as to the rigorous non-linear time history analysis. Analyses show the efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document