Modal‐based ground motion selection procedure for nonlinear response time history analysis of high‐rise buildings

2019 ◽  
Vol 49 (1) ◽  
pp. 95-110
Author(s):  
Yang Liu ◽  
J.S. Kuang ◽  
Terry Y.P. Yuen
Author(s):  
Gareth J. Morris ◽  
Andrew J. Thompson ◽  
James N. Dismuke ◽  
Brendon A. Bradley

Nonlinear response history analysis (NLRHA), or so-called “nonlinear time history analysis”, is adopted by practicing structural engineers who implement performance-based seismic design and/or assessment procedures. One important aspect in obtaining reliable output from the NLRHA procedure is the input ground motion records. The underlying intention of ground motion selection and amplitude-scaling procedures is to ensure the input for NLRHA is representative of the ground shaking hazard level, for a given site and structure. The purpose of this paper is to highlight the salient limitations of the ground motion selection and scaling requirements in Sections 5.5 and 6.4 of the New Zealand (NZ) loading standard NZS 1170.5 (2004). From a NZ regulatory perspective; there is no specific framework for seismic hazard analysis and ground motion selection (thus self-regulation is the current norm). In contrast, NZS 1170.5 contains many prescriptive requirements for scaling and applying records which are challenging to satisfy in practice. Also discussed within, there are implications for more modern guidance documents in NZ, such as the 2017 “Assessment Guidelines” for existing buildings, which cite NZS 1170.5, a standard which is at least 16 years old (draft issued in 2002). To emphasize the above issues with NZS 1170.5, this paper presents a summary of the more contemporary approaches in the US standards ASCE 7-16 (new buildings) and ASCE 41-17 (existing buildings), along with some examples of the more stringent US requirements for Tall Buildings.


2021 ◽  
Vol 11 (17) ◽  
pp. 8230
Author(s):  
Yang Liu

This paper presents a modification of the modal-based ground motion selection (MGMS) method for improving the reliability of the nonlinear response time history analysis (NLRHA) of reinforced concrete (RC) shear wall structures. The original MGMS procedure quantified the impact of frequency content combinations in the time domain (FCCTD) of input ground motions (IGMs) on the seismic response of building structures using the level of interaction of the first three modes induced by IGMs. However, previous research found that the first two modes have far larger modal mass coefficients than those of higher modes and dominate the vibration of the RC shear wall structures with a symmetric plan. Therefore, the MGMS procedure should be modified by employing the interaction of the first two modes induced by IGMs to properly account for the effect of the FCCTD of IGMs on the seismic response of structures. In the MGMS procedure for RC shear wall structures, seven IGMs that caused the most significant interactions of the first two modes were selected from a suite of twenty seed IGMs, which were chosen with a conventional spectra-matching-based IGMs selection procedure for the NLRHA of the structure. A comprehensive case study involving three RC shear walls with different heights was conducted to investigate the capability of the MGMS in selecting suitable IGMs for the NLRHA of RC shear wall structures. Sets of seed IGMs were selected, adopting conditional mean spectra and design spectra as the target spectra. It was found that the seismic demands computed using MGMS selected IGMs can ensure a more reliable and reasonable computation of seismic demands compared with conventional spectra-matching-based IGMs selection methods.


2011 ◽  
Vol 243-249 ◽  
pp. 3988-3991 ◽  
Author(s):  
Pei Ju Chang ◽  
Jian Zhu

This study focus on derivation of such fragility curves using classic mid-story isolation and reduction structures (MIRS) in China metropolis. A set of stochastic earthquake waves compatible with the response spectrum of China seismic code selected to represent the variability in ground motion. Dynamic inelastic time history analysis was used to analyze the random sample of structures. The result reveal that good effect for superstructure and reduction effect for substructure of MIRS is favorable and obvious under major earthquake, Weak position of MIRS was be pointed out and fragility curves of typical MIRS of China was obtained finally.


2011 ◽  
Vol 71-78 ◽  
pp. 2836-2839
Author(s):  
Hui Xia Xiong ◽  
Chang Yong Wang

The dynamic property of a high-rise building structure and time-history analysis under earthquake were analyzed by using the finite element program ANSYS. A modal analysis of the tower was conducted and the first 20 frequencies and modal shapes were obtained. The displacements and inner force under the earthquake were calculated. The result showed that the structural stiffness was enough to sustain earthquake load; and the stiffness distributed equally. These results can provide reliable basis for structural design.


Sign in / Sign up

Export Citation Format

Share Document