scholarly journals A Method for the Design of Concrete with Combined Steel and Basalt Fiber

2021 ◽  
Vol 11 (19) ◽  
pp. 8850
Author(s):  
Leonid Dvorkin ◽  
Oleh Bordiuzhenko ◽  
Biruk Hailu Tekle ◽  
Yuri Ribakov

Combining different fiber types may improve the mechanical properties of fiber reinforced concrete. The present study is focused on investigating hybrid fiber reinforced concrete (HFRC) with steel and basalt fiber. Mechanical properties of fiber reinforced fine-grained concrete are investigated. The results demonstrate that using optimal steel and basalt fiber reinforcement ratios avoids concrete mixtures’ segregation and improves their homogeneity. Concrete with hybrid steel and basalt fiber reinforcement has higher strength. Effective methodology for proper design of HFRC compositions was proposed. It is based on the mathematical experiments planning method. The proposed method enables optimal mix proportioning of high-strength fine-grained concrete with hybrid steel and basalt fiber reinforcement.

2021 ◽  
Vol 264 ◽  
pp. 02030
Author(s):  
Leonid Dvorkin ◽  
Oleh Bordiuzhenko ◽  
Vadim Zhitkovsky ◽  
Svyatoslav Gomon ◽  
Sviatoslav Homon

Adding different fiber types may yield improvement of steel fiber reinforced concrete (SFRC) features. Therefore, the investigation of hybrid fiber reinforced concrete (HFRC) mechanical properties is relevant. The effect of adding hybrid steel and basalt fiber on the mechanical properties of fine-grained concrete is studied. It is shown that hybrid fiber reinforcement using optimal steel and basalt fiber ratio allows preventing concrete mixtures' segregation and improving their structure homogeneity. This, in turn, allows achieving higher concrete strength values. In most cases, the design of such concrete compositions is based on engineering experience that limits the designers' capabilities. Therefore, an effective methodology for proper HFRC composition design should be developed. The present study is focused on developing such a methodology. The developed methodology includes using the mathematical experiments planning method to design optimal composition of high-strength fine-grained fiber reinforced concrete with hybrid steel and basalt fiber reinforcement. It is demonstrated that the proposed method can be effectively used for the design of optimal compositions of HFRC.


2011 ◽  
Vol 194-196 ◽  
pp. 1103-1108 ◽  
Author(s):  
Yong Xin Yang ◽  
Jie Lian

In this paper, mechanical performances of 480 specimens are tested and influences of basalt fiber ratio, slenderness, soakage material are studied. Results indicate that mechanical properties of BFRC are better than plain concrete. It can be found that the best mechanical performance may be get when the basalt fiber soaked by water-solubility material and its ratio at 8.4 to 14 kg per square meter as well as slenderness at 600 to 800.


2021 ◽  
Vol 1043 ◽  
pp. 61-65
Author(s):  
Tolya Khezhev ◽  
Aslan Kardanov ◽  
Eldar Bolotokov ◽  
Azamat Dottuyev ◽  
Ibrahim Mashfezh

The results of the studies on the creation of self-compacting fine-grained fiber-reinforced concrete based on run-of-crusher stone with the use of a polyfunctional additive D-5 are presented. Compositions of self-compacting fine-grained fiber-reinforced concrete with the use of basalt fiber have been developed, which significantly reduce cement consumption and improve the characteristics of fine-grained concrete mixture and concrete. Using a polyfunctional additive D-5in mixtures makes it possible to increase the strength properties of fine-grained fiber-reinforced concrete while improving the concrete mixtures’ rheological characteristics. Replacement of cement up to 10% of the mass by ash fraction d<0.14 min fine-grained concrete mixtures does not cause a noticeable decrease in the concrete strength properties. The developed self-compacting fine-grained fiber-reinforced concretes have increased strength properties and have a low-cost price due to the use of local raw materials and run-of-crusher stone.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5202
Author(s):  
Mohammad Iqbal Khan ◽  
Wasim Abbass ◽  
Mohammad Alrubaidi ◽  
Fahad K. Alqahtani

High-strength concrete is used to provide quality control for concrete structures, yet it has the drawback of brittleness. The inclusion of fibers improves the ductility of concrete but negatively affects the fresh properties of fiber-reinforced concrete. The effects of different fine to coarse aggregate ratios on the fresh and hardened properties of steel fiber reinforced concrete were investigated in this study. Mixtures were prepared with various fine to coarse aggregate (FA/CA) ratios incorporating 1% steel fiber content (by volume) at constant water to cement ratio. The workability, unit weight, and temperature of the concrete in the fresh state, and the mechanical properties of steel-fiber-reinforced concrete (SFRC) were investigated. The inclusion of fiber in concrete influenced the mobility of concrete in the fresh state by acting as a barrier to the movement of coarse aggregate. It was observed that the concrete with an FA/CA ratio above 0.8 showed better flowability in the fresh state, whilst an above 0.9 FA/CA ratio requires excessive superplasticizer to maintain the flowability of the mixtures. The compressive and flexural strength of SFRC increased with an increase in the FA/CA ratio by around 10% and 28%, respectively. Experimental values of compressive strength and flexural strength showed good agreement, however, modulus of elasticity demonstrated slightly higher values. The experimentally obtained measurements of the mechanical properties of SFRC conformed reasonably well with the available existing prediction equations, and further enabled establishing predictive isoresponse interactive equations within the scope of the investigation domain.


Sign in / Sign up

Export Citation Format

Share Document