scholarly journals A Study on Sputtering of Copper Seed Layer for Interconnect Metallization via Molecular Dynamics Simulation

2021 ◽  
Vol 11 (20) ◽  
pp. 9702
Author(s):  
Cheng-Hsuan Ho ◽  
Cha’o-Kuang Chen ◽  
Chieh-Li Chen

Interconnects are significant elements in integrated circuits (ICs), as they connect individual components of the circuit into a functioning whole. To form a void-free interconnect, a thin and uniform copper seed layer must be deposited as a basis for electroplating. In this paper, process parameters of sputtering including incident energy, incident angle, substrate temperature, and deposition rate were studied to form a uniform copper seed layer. Different liner/barrier materials and properties including crystal planes were also studied to enhance the quality of the copper seed layer. The study was carried out by molecular dynamics simulation. It revealed that increasing the incident energy and substrate temperature during the sputtering process increases their diffusivity but results in poorer uniformity and larger alloy percentage. By decreasing the deposition rate, the Ostwald ripening effect becomes dominant and increases the uniformity. An adequate incident angle could increase necking and uniformity. Among the sputtering process parameters and material properties discussed in this study, surface diffusion barrier energy of different crystal planes is the most decisive factor, which leads to good uniformity.

2018 ◽  
Vol 4 (4) ◽  
Author(s):  
Qiang Zhao ◽  
Yang Li ◽  
Zheng Zhang ◽  
Xiaoping Ouyang

The sputtering of graphite due to the bombardment of hydrogen isotopes is crucial to successfully using graphite in the fusion environment. In this work, we use molecular dynamics to simulate the sputtering using the large-scale atomic/molecular massively parallel simulator (lammps). The calculation results show that the peak values of the sputtering yield are between 25 eV and 50 eV. When the incident energy is greater than the energy corresponding to the peak value, a lower carbon sputtering yield is obtained. The temperature that is most likely to sputter is approximately 800 K for hydrogen, deuterium, and tritium. Below the 800 K, the sputtering yields increase with temperature. By contrast, above the 800 K, the yields decrease with increasing temperature. Under the same temperature and incident energy, the sputtering rate of tritium is greater than that of deuterium, which in turn is greater than that of hydrogen. When the incident energy is 25 eV, the sputtering yield at 300 K increases below an incident angle at 30 deg and remains steady after that.


2002 ◽  
Vol 16 (26) ◽  
pp. 3971-3978 ◽  
Author(s):  
A. J. DU ◽  
Z. Y. PAN ◽  
Z. HUANG ◽  
Z. J. LI ◽  
Q. WEI ◽  
...  

In this paper, the initial stage of films assembled by energetic C 36 fullerenes on diamond (001)–(2 × 1) surface at low-temperature was investigated by molecular dynamics simulation using the Brenner potential. The incident energy was first uniformly distributed within an energy interval 20–50 eV, which was known to be the optimum energy range for chemisorption of single C 36 on diamond (001) surface. More than one hundred C 36 cages were impacted one after the other onto the diamond surface by randomly selecting their orientation as well as the impact position relative to the surface. The growth of films was found to be in three-dimensional island mode, where the deposited C 36 acted as building blocks. The study of film morphology shows that it retains the structure of a free C 36 cage, which is consistent with Low Energy Cluster Beam Deposition (LECBD) experiments. The adlayer is composed of many C 36-monomers as well as the covalently bonded C 36 dimers and trimers which is quite different from that of C 20 fullerene-assembled film, where a big polymerlike chain was observed due to the stronger interaction between C 20 cages. In addition, the chemisorption probability of C 36 fullerenes is decreased with increasing coverage because the interaction between these clusters is weaker than that between the cluster and the surface. When the incident energy is increased to 40–65 eV, the chemisorption probability is found to increased and more dimers and trimers as well as polymerlike- C 36 were observed on the deposited films. Furthermore, C 36 film also showed high thermal stability even when the temperature was raised to 1500 K.


Sign in / Sign up

Export Citation Format

Share Document