scholarly journals Radiation Protection Evaluations Following the Installations of Two Cardiovascular Digital X-ray Fluoroscopy Systems

2021 ◽  
Vol 11 (20) ◽  
pp. 9749
Author(s):  
Ibrahim I. Suliman ◽  
Abdelmoneim Sulieman ◽  
Essam Mattar

Acceptance testing and commission are essential elements of the quality assurance program for imaging equipment. We present the results of a performance evaluation of Flat Panel-Based Cardiovascular Fluoroscopy X-ray Systems as a part of acceptance testing and commissioning. Measurements were obtained using a calibrated dose rate meter, patient equivalent phantoms, and Leeds image quality test tools. The results were compared with the manufacturer and European acceptability criteria. The entrance surface air kerma (ESAK) rate ranged from 8.0 to 12.0 mGy min−1 in the continuous mode and from 0.01 to 0.04 mGy fr−1 in the pulsed mode of operation. Detector-input air kerma rates ranged from 0.29 to 0.39 mGy min−1 in continuous mode and from 0.02 to 0.07 µGy fr−1 in pulsed mode. Fluoroscopy device half-value layer (HVL) ranged from 2.5 to 3.0 mm Al, and the low resolution ranged from 0.9 to 1.3%. The spatial resolution limit was double that of the image intensifier (2.4 to 3.6) lp/mm. Flat-panel fluoroscopy demonstrated superior image quality and dose performance as compared to conventional image intensifier-based fluoroscopy. The quality assurance measurements presented are essential in the rapid evaluation of the imaging system for acceptance testing and commissioning.

2015 ◽  
Vol 12 (12) ◽  
pp. 85-88
Author(s):  
Kanchan P Adhikari ◽  
Aarati Shah ◽  
Bibek Achraya ◽  
Ambuj Karn ◽  
Sandhya Chapagain

To evaluate the accuracy of radiation dose delivered to the cancer patients by using HDR Brachytherapy and to know proposed methods for the initial source installation tests, acceptance testing and a quality assurance program are done on Nucletron MicroSelectron 192Ir HDR Brachytherapy Afterloader at NAMS, Bir Hospital. The observation of sweet spots (maximum dose distribution) by using well chamber (SI HDR 1000) and electrometer (SI CDX 2000). On the basis of the observed sweet spot, Air Kerma Strength of the source is determined. Beside this includes the conformation of step size, radioactivity of the nuclides and safety measures of the machine. A careful radiation survey has been undertaken around the brachytherapy by using well calibrated TBM-IC Mark V is a small ion chamber radiation monitor. Acceptance testing and commissioning of the HDR brachytherapy unit has been completed. Air Kerma strength in newly installed source exhibit small variation but within the limit. The step size has standard deviation 0.05 with the planned step size. The measurement of radiation level around brachytherapy shows the level is within the criteria. Nucletron MicroSelectron 192Ir HDR brachytherapy system has been implemented in our unit. The acceptance test shows that status of brachytherapy and its components are functioning well. Radiation dose which will be delivered to the cancer patients are within planned dose.Scientific World, Vol. 12, No. 12, September 2014, page 85-88         


2011 ◽  
Vol 15 (3) ◽  
pp. 70 ◽  
Author(s):  
Geoffrey K Korir ◽  
Jeska Sidika Wambani ◽  
Ian K Korir

Background. The wide use of ionising radiation in medical care has resulted in the largest man-made cause of radiation exposure. In recent years, diagnostic departments in Kenya have adapted the high-speed film/screen combination without well-established quality control, objective image quality criteria, and assessment of patient dose. The safety of patients in terms of justification and the as-low-as-reasonably-achievable (ALARA) principle is inadequate without quality assurance measures. Aim. This study assessed the level of film rejects, device performance, image quality and patient dose in 4 representative hospitals using high-speed film/screen combination. Results. The X-ray equipment quality control tests performance range was 67% to 90%, and 63% of the radiographs were of good diagnostic value. The measured prevalent chest examination entrance surface dose (ESD) showed levels above the international diagnostic reference levels (DRLs), while lumbar spine and pelvis examination was the largest source of radiation exposure to patients. Conclusion. The optimisation of patient protection can be achieved with optimally performing X-ray equipment, the application of good radiographic technique, and continuous assessment of radiographic image quality.


2000 ◽  
Author(s):  
Shinichi Yamada ◽  
Hiroko Umazaki ◽  
Akihito Takahashi ◽  
Michitaka Honda ◽  
Kunio Shiraishi ◽  
...  

2008 ◽  
Vol 35 (5) ◽  
pp. 1807-1815 ◽  
Author(s):  
Jean-Pierre Bissonnette ◽  
Douglas J. Moseley ◽  
David A. Jaffray

Author(s):  
Tania Afroz ◽  
Pretam K. Das ◽  
S. I. Chawdhury ◽  
Shudeb K. Roy

Aim of this work is to calibrate the high dose rate (HDR) brachytherapy source 60Co. The radioactive source calibration is a very important part of the quality assurance program for dosimetry of brachytherapy source. The goal of this project is the calibration of HDR Brachytherapy source in radiation therapy is the measurement of the air kerma rate which required actual dose to deliver. The source calibration is an essential part of the quality assurance program for dosimetry of brachytherapy source. This research will help the patient who is involving brachytherapy treatment. HDR brachytherapy source 60Co is inserted directly or in close to the tumor. Most commonly using method for calibration of HDR brachytherapy source 60CO is well type ionization chamber. Calibration of the radioactive source 60Co brachytherapy source is very important for the treatment of cancer patient. We have got the variation between RAKR from TPS and measured Air Kerma Rate of 60Co brachytherapy source are 3.2% and 3.04% and which give very good agreement with the Air Kerma Rate (RAKR) is 5% (from BEBIG protocol, Germany). So, our results were satisfied for brachytherapy treatment. From these results, it must be concluded that, 60Co brachytherapy source is suitable for brachytherapy cancer treatment. It is very difficult to calculate treatment deliver dose without calibrating AKR of HDR brachytherapy source. It is very important to verify the calculated Air Kerma Rate by TPS Air Kerma Rate.


Sign in / Sign up

Export Citation Format

Share Document