scholarly journals Supercapacitors in Constant-Power Applications: Mathematical Analysis for the Calculation of Temperature

2021 ◽  
Vol 11 (21) ◽  
pp. 10153
Author(s):  
Joaquín F. Pedrayes ◽  
Manuel G. Melero ◽  
Joaquín G. Norniella ◽  
Manés F. Cabanas ◽  
Gonzalo A. Orcajo ◽  
...  

A set of analytical equations for the calculation of the temperature in supercapacitors operating in constant-power applications is presented in this paper. Although the main operation modes of supercapacitors are constant-current and constant-power charge and discharge, this study was focused on the latter, since both sources and loads act as constant-power systems in a wide range of power conversion facilities. The starting point of this study is the classical supercapacitor model based on electrical and thermal parameters provided by manufacturers or also obtained by experimental means. The proposed mathematical analysis is based on the so-called incomplete gamma function that presents two major advantages over previously existing methods. Firstly, it is not necessary to solve any differential equations system by means of numerical methods, which reduces the required computational effort. Secondly, no simplifications to relief the calculations are made in the computation of any variable. The new formulation renders valid solutions even for high-power demand situations. Moreover, the temperature of the supercapacitor can be expressed as a function of time or any other electrical variable in the charging and discharging processes. Therefore, the proposed formulas are especially remarkable for the electrical and thermal dimensioning of supercapacitors.

Author(s):  
P.E. Russell ◽  
I.H. Musselman

Scanning tunneling microscopy (STM) has evolved rapidly in the past few years. Major developments have occurred in instrumentation, theory, and in a wide range of applications. In this paper, an overview of the application of STM and related techniques to polymers will be given, followed by a discussion of current research issues and prospects for future developments. The application of STM to polymers can be conveniently divided into the following subject areas: atomic scale imaging of uncoated polymer structures; topographic imaging and metrology of man-made polymer structures; and modification of polymer structures. Since many polymers are poor electrical conductors and hence unsuitable for use as a tunneling electrode, the related atomic force microscopy (AFM) technique which is capable of imaging both conductors and insulators has also been applied to polymers.The STM is well known for its high resolution capabilities in the x, y and z axes (Å in x andy and sub-Å in z). In addition to high resolution capabilities, the STM technique provides true three dimensional information in the constant current mode. In this mode, the STM tip is held at a fixed tunneling current (and a fixed bias voltage) and hence a fixed height above the sample surface while scanning across the sample surface.


2020 ◽  
Author(s):  
Eleonora Diamanti ◽  
Inda Setyawati ◽  
Spyridon Bousis ◽  
leticia mojas ◽  
lotteke Swier ◽  
...  

Here, we report on the virtual screening, design, synthesis and structure–activity relationships (SARs) of the first class of selective, antibacterial agents against the energy-coupling factor (ECF) transporters. The ECF transporters are a family of transmembrane proteins involved in the uptake of vitamins in a wide range of bacteria. Inhibition of the activity of these proteins could reduce the viability of pathogens that depend on vitamin uptake. Because of their central role in the metabolism of bacteria and their absence in humans, ECF transporters are novel potential antimicrobial targets to tackle infection. The hit compound’s metabolic and plasma stability, the potency (20, MIC Streptococcus pneumoniae = 2 µg/mL), the absence of cytotoxicity and a lack of resistance development under the conditions tested here suggest that this scaffold may represent a promising starting point for the development of novel antimicrobial agents with an unprecedented mechanism of action.<br>


2019 ◽  
Vol 16 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Reshma Nagpal ◽  
Jitender Bhalla ◽  
Shamsher S. Bari

Background:A lot of advancement has been made in the area of β-lactams in recent times. Most of the research is targeted towards the synthesis of novel β-lactams, their functionalization and exploring their biological potential. The C-3 functionalization of β-lactams has continued to attract considerable interest of the scientific community due to their utility as versatile intermediates in organic synthesis and their therapeutic applications. This has led to the significant increase in efforts towards developing efficient and economic strategies for C-3 functionalized β-lactams.Objective:The present review aims to highlight recent advancement made in C-3 functionalization of β-lactams.Conclusion:To summarize, functionalization of β-lactams at C-3 is an essential aspect of β-lactam chemistry in order to improve/modify its synthetic utility as well as biological potential. The C-3 carbocation equivalent method has emerged as an important and convenient strategy for C-3 functionalization of β-lactam heterocycles which provides a wide range of β-lactams viz. 3-alkylated β-lactams, 3-aryl/heteroarylated β-lactams, 3- alkoxylated β-lactams. On the other hand, base mediated functionalization of β-lactams via carbanion intermediate is another useful approach but their scope is limited by the requirement of stringent reaction conditions. In addition to this, organometallic reagent mediated α-alkylation of 3-halo/3-keto-β-lactams also emerged as interesting methods for the synthesis of functionalized β-lactams having good yields and diastereoselectivities.


2004 ◽  
Vol 50 (11) ◽  
pp. 2019-2027 ◽  
Author(s):  
Scott C Johnson ◽  
David J Marshall ◽  
Gerda Harms ◽  
Christie M Miller ◽  
Christopher B Sherrill ◽  
...  

Abstract Background: All states require some kind of testing for newborns, but the policies are far from standardized. In some states, newborn screening may include genetic tests for a wide range of targets, but the costs and complexities of the newer genetic tests inhibit expansion of newborn screening. We describe the development and technical evaluation of a multiplex platform that may foster increased newborn genetic screening. Methods: MultiCode® PLx involves three major steps: PCR, target-specific extension, and liquid chip decoding. Each step is performed in the same reaction vessel, and the test is completed in ∼3 h. For site-specific labeling and room-temperature decoding, we use an additional base pair constructed from isoguanosine and isocytidine. We used the method to test for mutations within the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The developed test was performed manually and by automated liquid handling. Initially, 225 samples with a range of genotypes were tested retrospectively with the method. A prospective study used samples from &gt;400 newborns. Results: In the retrospective study, 99.1% of samples were correctly genotyped with no incorrect calls made. In the perspective study, 95% of the samples were correctly genotyped for all targets, and there were no incorrect calls. Conclusions: The unique genetic multiplexing platform was successfully able to test for 31 targets within the CFTR gene and provides accurate genotype assignments in a clinical setting.


Sign in / Sign up

Export Citation Format

Share Document