scholarly journals A Mechanical Feedback Classification of Linear Mechanical Control Systems

2021 ◽  
Vol 11 (22) ◽  
pp. 10669
Author(s):  
Marcin Nowicki ◽  
Witold Respondek

We give a classification of linear nondissipative mechanical control system under mechanical change of coordinates and feedback. First, we consider a controllable case that is somehow a mechanical counterpart of Brunovský classification, then we extend the result to all linear nondissipative mechanical systems (not necessarily controllable) which leads to a mechanical canonical decomposition. The classification of Lagrangian systems is given afterwards. Next, we show an application of the classification results to the stability and stabilization problem and illustrate them with several examples. All presented results in this paper are expressed in terms of objects on the configuration space Rn only, while the state-space of a mechanical control system is Rn×Rn consisting of configurations and velocities.

Author(s):  
Fu Dongmei

In engineering application, the characteristics of the control system are entirely determined by the system controller once the controlled object has been chosen. Improving the traditional controller or constructing the new controller is an unfading study field of control theory and application. The control system is greatly enriched and developed by this way. As a complicated self-adaptable system, the biological immune system can effectively and smoothly stand against antigens and viruses intruded into organism. It is possible to improve the self-learning, adaptive and robustness capability of the control system through embedded an artificial immune controller in control system. Based on the biological immune mechanism and artificial immune model, this chapter attempts to study the immune controller design and application in traditional control system..First, a kind of artificial immune controller is proposed based on the T-B cells immunity. The boundedness and the stability of SISO control systems, which constructed by the artificial immune controller, are proved by the little gain theorem. A general controller structure frame based on the T-B cells immunity is proposed, which includes the same kind of controller proposed previously. The validity of this artificial immune controller is verified by simulation. Second, a new type of artificial immune controllers is constructed according to a simple double-cell immune dynamics model. The non-error characteristic of SISO control systems, which constructed by the artificial immune controller, is proved by the nonlinear theory in this chapter. The I/O stability and no-error characteristic of the system are verified by simulations, which show that the kind of artificial immune system have good anti-lag capability. Third, the Varela immune network model has been improved based on which an artificial immune system is proposed. The odd linearization method of the non-linear system is used to prove the stability and non-error characteristic of the SISO system constructed by the artificial immune control system. Its I/O stability, non-error characteristic and strong anti-lag capability are also verified by simulation. Finally, based on the comparison of the three kinds of immune controllers, a general structure of the artificial immune controller is proposed. The further study on this field is indicated in this chapter lastly.


2011 ◽  
Vol 66-68 ◽  
pp. 199-202
Author(s):  
Jun Wei Lei ◽  
Jing Tang ◽  
Hua Li Wu

The stabilization problem of a system without parameter uncertainties can always be transferred to a tracking problem if it is no need to consider the robustness requirement of a system. But those two questions are not the same for a missile control systems. In this paper, the uncertainties of parameters are considered, and we found that the stabilization problem can not be transferred to a tracking problem.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Zhongda Lu ◽  
Lijing Wang ◽  
Fengbin Zhang ◽  
Fengxia Xu

This paper considers the stability andH∞control problem of networked control systems with time delay. Taking into account the influence of network with delay, unknown input disturbance, and uncertainties of the system modeling, meanwhile we establish a precise, closed-loop model for networked control systems with time delay. By selecting a proper Lyapunov-Krasovskii function and using Lyapunov theorem, a sufficient condition for stability of the system in the form of LMI is demonstrated, corresponding controller parameters are acquired, and the convergence of the control algorithm is proved. The simulation example shows that the construction of the network robust control system with time delay indeed improves the stability performance of the system, which indicates the effectiveness of the design.


2012 ◽  
Vol 22 (2) ◽  
pp. 161-174 ◽  
Author(s):  
Tomasz Szmidt ◽  
Piotr Przybyłowicz

An active electromagnetic stabilization of the Leipholz column We study the application of electromagnetic actuators for the active stabilization of the Leipholz column. The cases of the compressive and tensional load of the column placed in air and in water are considered. The partial differential equation of the column is discretized by Galerkin's procedure, and the stability of the obtained control system is evaluated by the eigenvalues of its linearization. Four different methods of active stabilization are investigated. They incorporate control systems based on feedback proportional to the transverse displacement of the column, its velocity and the current in the electromagnets. Conditions in which these strategies are effective in securing safe operation of the column are discussed in detail.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Hongqian Lu ◽  
Yue Hu ◽  
Chaoqun Guo ◽  
Wuneng Zhou

This note focuses on the stability and stabilization problem of nonlinear networked control system with time delay. To alleviate the burden of transformation channel and shorten the dynamic process simultaneously, an improved event-triggered scheme is proposed. This paper employs an improved time delay method to enhance the performance and reduce the delay upper bound conservatism. Less conservative stability criteria related to the order N are derived by establishing an augmented Lyapunov-Krasovskii functional manufactured for the use of Bessel-Legendre inequality. In addition, an event-triggered controller is designed for nonlinear networked control system with time delay. At last, numerical examples are proposed to verify the effectiveness of the new method.


2013 ◽  
Vol 313-314 ◽  
pp. 498-502
Author(s):  
A.M. Kassim ◽  
M.Z.A. Rashid ◽  
M.R. Yaacob ◽  
N. Abas ◽  
T. Yasuno

In this paper, the collaboration of CPG networks with the feedback control system which are composed with the maximum hopping height detector and the Proportional Integral (PI) controller as an engineering application for the CPG network is proposed with the developed control systems. By adding the feedback loop through the feedback controller, the developed quadruped hopping robot not only can generate the continuous hopping performances but also can control the desired hopping height. As the result, the effectiveness of CPG networks to keep the stability of the developed quadruped hopping robot besides of confirming the validity of using reference height control system to generate hopping capability at different reference height, respectively.


2020 ◽  
Vol 6 (2) ◽  
pp. 26-33
Author(s):  
Evgeniy V. Shakhmatov ◽  
V. P. Shorin ◽  
T. A. Chubenko

In this article, theoretical dependencies for constructing the stability boundary of the system were determined. The influence of the characteristics of the connected circuits on the stability of the constant pressure valve is analyzed. To confirm the established theoretical dependences, experimental studies of the valve with the corresponding boundary conditions were carried out. As a result, oscillograms of valve tests were obtained for various connected lines.


Sign in / Sign up

Export Citation Format

Share Document