scholarly journals Interaction between Spike Protein of SARS-CoV-2 and Human Virus Receptor ACE2 Using Two-Color Fluorescence Cross-Correlation Spectroscopy

2021 ◽  
Vol 11 (22) ◽  
pp. 10697
Author(s):  
Ai Fujimoto ◽  
Yidan Lyu ◽  
Masataka Kinjo ◽  
Akira Kitamura

Infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), is initiated by the interaction between a receptor protein, angiotensin-converting enzyme type 2 (ACE2) on the cell surface, and the viral spike (S) protein. This interaction is similar to the mechanism in SARS-CoV, a close relative of SARS-CoV-2, which was identified in 2003. Drugs and antibodies that inhibit the interaction between ACE2 and S proteins could be key therapeutic methods for preventing viral infection and replication in COVID-19. Here, we demonstrate the interaction between human ACE2 and a fragment of the S protein (S1 subunit) derived from SARS-CoV-2 and SARS-CoV using two-color fluorescence cross-correlation spectroscopy (FCCS), which can detect the interaction of fluorescently labeled proteins. The S1 subunit of SARS-CoV-2 interacted in solution with soluble ACE2, which lacks a transmembrane region, more strongly than that of SARS-CoV. Furthermore, one-to-one stoichiometry of the two proteins during the interaction was indicated. Thus, we propose that this FCCS-based interaction detection system can be used to analyze the interaction strengths of various mutants of the S1 subunit that have evolved during the worldwide pandemic, and also offers the opportunity to screen and evaluate the performance of drugs and antibodies that inhibit the interaction.

2021 ◽  
Author(s):  
Ai Fujimoto ◽  
Yidan Lyu ◽  
Masataka Kinjo ◽  
Akira Kitamura

Infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), is initiated by the interaction between a receptor protein, angiotensin-converting enzyme type 2 (ACE2) on the cell surface, and the viral spike (S) protein. This interaction is similar to the mechanism in SARS-CoV, a close relative of SARS-CoV-2, which was identified in 2003. Drugs and antibodies that inhibit the interaction between ACE2 and S proteins could be key therapeutic methods for preventing viral infection and replication in COVID-19. Here, we demonstrate the interaction between human ACE2 and a fragment of the S protein (S1 subunit) derived from SARS-CoV-2 and SARS-CoV using two-color fluorescence cross-correlation spectroscopy (FCCS), which can detect the interaction of fluorescently labeled proteins. The S1 subunit of SARS-CoV-2 interacted in solution with soluble ACE2, which lacks a transmembrane region, more strongly than that of SARS-CoV. Furthermore, one-to-one stoichiometry of the two proteins during the interaction was indicated. Thus, we propose that this FCCS-based interaction detection system can be used to analyze the interaction strengths of various mutants of the S1 subunit that have evolved during the worldwide pandemic, and also offers the opportunity to screen and evaluate the performance of drugs and antibodies that inhibit the interaction.


2021 ◽  
Vol 14 (8) ◽  
pp. 757
Author(s):  
Iga Jakobowska ◽  
Frank Becker ◽  
Stefano Minguzzi ◽  
Kerrin Hansen ◽  
Björn Henke ◽  
...  

Blocking lactate export in the parasitic protozoan Plasmodium falciparum is a novel strategy to combat malaria. We discovered small drug-like molecules that inhibit the sole plasmodial lactate transporter, PfFNT, and kill parasites in culture. The pentafluoro-3-hydroxy-pent-2-en-1-one BH296 blocks PfFNT with nanomolar efficiency but an in vitro selected PfFNT G107S mutation confers resistance against the drug. We circumvented the mutation by introducing a nitrogen atom as a hydrogen bond acceptor site into the aromatic ring of the inhibitor yielding BH267.meta. The current PfFNT inhibitor efficiency values were derived from yeast-based lactate transport assays, yet direct affinity and binding kinetics data are missing. Here, we expressed PfFNT fused with a green fluorescent protein in human embryonic kidney cells and generated fluorescent derivatives of the inhibitors, BH296 and BH267.meta. Using confocal imaging, we confirmed the location of the proposed binding site at the cytosolic transporter entry site. We then carried out fluorescence cross-correlation spectroscopy measurements to assign true Ki-values, as well as kon and koff rate constants for inhibitor binding to PfFNT wildtype and the G107S mutant. BH296 and BH267.meta gave similar rate constants for binding to PfFNT wildtype. BH296 was inactive on PfFNT G107S, whereas BH267.meta bound the mutant protein albeit with weaker affinity than to PfFNT wildtype. Eventually, using a set of PfFNT inhibitor compounds, we found a robust correlation of the results from the biophysical FCCS binding assay to inhibition data of the functional transport assay.


Lab on a Chip ◽  
2011 ◽  
Vol 11 (8) ◽  
pp. 1502 ◽  
Author(s):  
A. Chen ◽  
M. M. Eberle ◽  
E. J. Lunt ◽  
S. Liu ◽  
K. Leake ◽  
...  

Author(s):  
Muttineni Radhakrishna ◽  
Binitha R ◽  
Kalyani Putty ◽  
Kavitha Marpakala ◽  
Panyam Jaslin ◽  
...  

Against the backdrop of the second wave of COVID-19 pandemic in India that started in March 2021, we have monitored the spike (S) protein mutations in all the reported (GISAID portal) whole genome sequences of SARS CoV-2 circulating in India from 1 January 2021 to 31 August 2021. In the 43,102 SARS-CoV-2 genomic sequences analysed, we have identified 24, 260 mutations in the S protein, based on which 265 pango lineages could be categorised. The dominant lineage in most of the 28 states of India and its 8 union territories was B.1.617.2 (the delta variant). However, the states Madhya Pradesh, Jammu & Kashmir, and Punjab had B.1.1.7 (alpha variant) as the major lineage, while the Himachal Pradesh state reported B.1.36 as the dominating lineage. A detailed analysis of various domains of S protein was carried out for detecting mutations having a prevalence of >1%; 70, 18, 7, 3, 9, 4, and 1 (N=112) such mutations were observed in the N -terminal domain, receptor binding domain, C -terminal domain, fusion peptide region, heptapeptide repeat (HR)-1 domains, signal peptide domain, and transmembrane region, respectively. However, no mutations were recorded in the HR-2, and cytoplasmic domains of the S protein. Interestingly, 13.39% (N=15) of these mutations were reported to increase the infectivity and pathogenicity of the virus; 2%(N=3) were known to be vaccine breakthrough mutations; and 0.89%(N=1) were known to escape neutralising antibodies. Biological significance of 82% (N=92) of the reported mutations is yet unknown. As SARS-CoV-2 variants are emerging rapidly, it is critical to continuously monitor local viral mutations to understand national trends of virus circulation. This can tremendously help in designing better preventive regimens in the country, and avoid vaccine breakthrough infections.


2020 ◽  
Author(s):  
Àngels Mateu-Regué ◽  
Jan Christiansen ◽  
Christian Hellriegel ◽  
Finn Cilius Nielsen

ABSTRACTUnderstanding the mRNA life cycle requires analysis of the dynamic macromolecular composition and stoichiometry of mRNPs. Fluorescence correlation and cross-correlation spectroscopy (FCS and FCCS) are appealing technologies to study mRNP complexes because they readily provide information about the molecular composition, stoichiometry, heterogeneity and dynamics of the particles. We developed FCS protocols for analysis of live cells and cellular lysates, and demonstrate the feasibility of analysing common cytoplasmic mRNPs composed of core factor YBX1, IMPs (or IGF2BPs) and their interactions with other RNA binding proteins such as PABPC1, ELAVL2 (HuB), STAU1 and FMRP. FCCS corroborated previously reported RNA dependent interactions between the factors and provided an estimate of the relative overlap between the factors in the mRNPs. In this way FCS and FCCS provide a new and useful approach for the quantitative and dynamic analysis of mRNP macromolecular complexes that may complement current biochemical approaches.


Sign in / Sign up

Export Citation Format

Share Document