scholarly journals Unmanned Aerial Vehicle (UAV) and Photogrammetric Technic for 3D Tsunamis Safety Modeling in Cilacap, Indonesia

2021 ◽  
Vol 11 (23) ◽  
pp. 11310
Author(s):  
Muhammad Yudhi Rezaldi ◽  
Ambar Yoganingrum ◽  
Nuraini Rahma Hanifa ◽  
Yoshiyuki Kaneda ◽  
Siti Kania Kushadiani ◽  
...  

Three-dimensional (3D) modeling of tsunami events is intended to promote tsunami safety. However, the developed 3D modeling methods based on Computational Fluid Dynamics and photorealistic particle visualization have some weaknesses, such as not being similar to the original environment, not measuring the wave’s end point, and low image accuracy. The method for 3D modeling of tsunamis that results from this research can fulfil those weaknesses because it has advantages, such as being able to predict the end point of waves, similar to the original environment, and the height and area of inundation. In addition, the method produces more detailed and sharper spatial data. Modeling in this research is conducted using Agisoft Metashape Professional software to a produce 3D orthomosaic from pictures taken with Unmanned Aerial Vehicle (UAV) technique or drone (photogrammetry), and 3ds max software is used for wave simulation. We take a sample of an area in Cilacap, Indonesia that was impacted by the 2006 southwest coast tsunamis and may be vulnerable to future big megathrust earthquakes and tsunamis. The results could be used to provide several benefits, such as the creation of evacuation routes and the determination of appropriate locations for building shelters.

Author(s):  
A. Finn ◽  
K. Rogers ◽  
J. Meade ◽  
J. Skinner ◽  
A. Zargarian

<p><strong>Abstract.</strong> An acoustic signature generated by an unmanned aerial vehicle is used in conjunction with tomography to remotely sense temperature and wind profiles within a volume of atmosphere up to an altitude of 120&amp;thinsp;m and over an area of 300&amp;thinsp;m&amp;thinsp;&amp;times;&amp;thinsp;300&amp;thinsp;m. Sound fields recorded onboard the aircraft and by an array of microphones on the ground are compared and converted to sound speed estimates for the ray paths intersecting the intervening medium. Tomographic inversion is then used to transform these sound speed values into three-dimensional profiles of virtual temperature and wind velocity, which enables the atmosphere to be visualised and monitored over time. The wind and temperature estimates obtained using this method are compared to independent measurements taken by a co-located mid-range ZephIR LIDAR and sensors onboard the aircraft. These comparisons show correspondences to better than 0.5&amp;thinsp;&amp;deg;C and 0.3&amp;thinsp;m/s for temperature and wind velocity, respectively.</p>


Author(s):  
Jun Tang ◽  
Jiayi Sun ◽  
Cong Lu ◽  
Songyang Lao

Multi-unmanned aerial vehicle trajectory planning is one of the most complex global optimum problems in multi-unmanned aerial vehicle coordinated control. Results of recent research works on trajectory planning reveal persisting theoretical and practical problems. To mitigate them, this paper proposes a novel optimized artificial potential field algorithm for multi-unmanned aerial vehicle operations in a three-dimensional dynamic space. For all purposes, this study considers the unmanned aerial vehicles and obstacles as spheres and cylinders with negative electricity, respectively, while the targets are considered spheres with positive electricity. However, the conventional artificial potential field algorithm is restricted to a single unmanned aerial vehicle trajectory planning in two-dimensional space and usually fails to ensure collision avoidance. To deal with this challenge, we propose a method with a distance factor and jump strategy to resolve common problems such as unreachable targets and ensure that the unmanned aerial vehicle does not collide into the obstacles. The method takes companion unmanned aerial vehicles as the dynamic obstacles to realize collaborative trajectory planning. Besides, the method solves jitter problems using the dynamic step adjustment method and climb strategy. It is validated in quantitative test simulation models and reasonable results are generated for a three-dimensional simulated urban environment.


2019 ◽  
Vol 35 (3) ◽  
pp. 367-376 ◽  
Author(s):  
Qiang Shi ◽  
Hanping Mao ◽  
Xianping Guan

Abstract. To analyze the droplet deposition under the influence of the flow field of an unmanned aerial vehicle (UAV), a hand-held three-dimensional (3D) laser scanner was used to scan 3D images of the UAV. Fluent software was used to simulate the motion characteristics of droplets and flow fields under the conditions of a flight speed of 3 m/s and an altitude of 1.5 m. The results indicated that the ground deposition concentration in the nonrotor flow field was high, the spray field width was 2.6 m, and the droplet deposition concentration was 50 to 200 ug/cm2. Under the influence of the rotor flow field, the widest deposition range of droplets reached 12.8 m. Notably, the droplet deposition uniformity worsened, and the concentration range of the droplet deposition was 0 to 500 ug/cm2. With the downward development of the downwash flow field, the overall velocity of the flow field gradually decreased, and the influence interval of the flow field gradually expanded. In this article, the droplet concentration was verified under simulated working conditions by a field experiment, thereby demonstrating the reliability of the numerical simulation results. This research could provide a basis for determining optimal UAV operating parameters, reducing the drift of droplets and increasing the utilization rate of pesticides. Keywords: Unmanned aerial vehicle (UAV), Aerial application, Downwash flow field, Droplet deposition, Simulation analysis.


Sign in / Sign up

Export Citation Format

Share Document