scholarly journals Mathematical Model for Scaling up Bioprocesses Using Experiment Design Combined with Buckingham Pi Theorem

2021 ◽  
Vol 11 (23) ◽  
pp. 11338
Author(s):  
Leidy Rendón-Castrillón ◽  
Margarita Ramírez-Carmona ◽  
Carlos Ocampo-López ◽  
Luis Gómez-Arroyave

Scaling up bioprocesses from the experimental to the pilot or industrial scale involves heuristics and scale relationships that are far from the specific phenomena and are usually not connected to the experimental data. In complex systems, the scaling-up methodology must connect the experimental data with the tools of engineering design. In this work, a two-stage gold bioleaching process was used as a case study to develop a mathematical model of bioprocess scaling that combines the design of experiments with dimensional analysis using the Buckingham Pi theorem to formulate a predictive model that allows scaling up bioprocesses. It was found that the C/N, C/K, and T/C ratios are dimensionless factors that can explain the behavior of a system. Using the Pearson Product–Moment bivariate analysis, it was found that the dimensionless factors C/N and C/K were correlated with the leaching potential of the fermented broth at 1060 cm−1. With these results, a non-linear logarithmic model based on dimensionless parameters was proposed to explain the behavior of the system with a correlation coefficient of R2 = 0.9889, showing that the optimal conditions to produce fermented broth comprised a C/N ratio close to 50 and a C/K ratio close to 800, which allows predicting the scaling of the bioprocess.

1981 ◽  
Vol 20 (04) ◽  
pp. 207-212 ◽  
Author(s):  
J. Hermans ◽  
B. van Zomeren ◽  
J. W. Raatgever ◽  
P. J. Sterk ◽  
J. D. F. Habbema

By means of a case study the choice between several methods of discriminant analysis is presented. Experimental data of a two-groups problem with one or two variables is analysed. The different methods are compared according to posterior probabilities which can be computed for each subject and which are the basis of discriminant analysis. These posterior probabilities are analysed graphically as well as numerically.


2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Delia Perju ◽  
Harieta Pirlea ◽  
Gabriela-Alina Brusturean ◽  
Dana Silaghi-Perju ◽  
Sorin Marinescu

The European laws and recently the Romanian ones impose more and more strict norms to the large nitrogen dioxide polluters. They are obligated to continuously improve the installations and products so that they limit and reduce the nitrogen dioxide pollution, because it has negative effects on the human health and environment. In this paper are presented these researches made within a case study for the Timi�oara municipality, regarding the modeling and simulation of the nitrogen dioxide dispersion phenomenon coming from various sources in atmosphere with the help of analytical-experimental methods. The mathematical model resulting from these researches is accurately enough to describe the real situation. This was confirmed by comparing the results obtained based on the model with real experimental values.


2018 ◽  
Vol 15 (1) ◽  
pp. 169-181
Author(s):  
M. I. Sidorov ◽  
М. Е. Stavrovsky ◽  
V. V. Irogov ◽  
E. S. Yurtsev

Using the example of van der Pol developed a mathematical model of frictional self-oscillations in topochemically kinetics. Marked qualitative correspondence of the results of calculation performed using the experimental data of researchers.


2012 ◽  
Vol 512-515 ◽  
pp. 2135-2142 ◽  
Author(s):  
Yu Peng Wu ◽  
Zhi Yong Wen ◽  
Yue Liang Shen ◽  
Qing Yan Fang ◽  
Cheng Zhang ◽  
...  

A computational fluid dynamics (CFD) model of a 600 MW opposed swirling coal-fired utility boiler has been established. The chemical percolation devolatilization (CPD) model, instead of an empirical method, has been adapted to predict the nitrogen release during the devolatilization. The current CFD model has been validated by comparing the simulated results with the experimental data obtained from the boiler for case study. The validated CFD model is then applied to study the effects of ratio of over fire air (OFA) on the combustion and nitrogen oxides (NOx) emission characteristics. It is found that, with increasing the ratio of OFA, the carbon content in fly ash increases linearly, and the NOx emission reduces largely. The OFA ratio of 30% is optimal for both high burnout of pulverized coal and low NOx emission. The present study provides helpful information for understanding and optimizing the combustion of the studied boiler


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ricardo Jorge Oliveira ◽  
Bruna Santos ◽  
Maria J. Mota ◽  
Susana R. Pereira ◽  
Pedro C. Branco ◽  
...  

Abstract Lignocellulosic biomass represents a suitable feedstock for production of biofuels and bioproducts. Its chemical composition depends on many aspects (e.g. plant source, pre-processing) and it has impact on productivity of industrial bioprocesses. Numerous methodologies can be applied for biomass characterisation, with acid hydrolysis being a particularly relevant step. This study intended to assess the most suitable procedures for acid hydrolysis, taking Eucalyptus globulus bark as a case study. For that purpose, variation of temperature (90–120 °C) was evaluated over time (0–5 h), through monosaccharides and oligosaccharides contents and degradation. For glucose, the optimal conditions were 100 °C for 2.5 h, reaching a content of 48.6 wt.%. For xylose, the highest content (15.2 wt.%) was achieved at 90 °C for 2 h, or 120 °C for 0.5 h. Maximum concentrations of mannose and galactose (1.0 and 1.7 wt.%, respectively) were achieved at 90 and 100 °C (2–3.5 h) or at 120 °C (0.5–1 h). These results revealed that different hydrolysis conditions should be applied for different sugars. Using this approach, total sugar quantification in eucalyptus bark was increased by 4.3%, which would represent a 5% increase in the ethanol volume produced, considering a hypothetical bioethanol production yield. This reflects the importance of feedstock characterization on determination of economic viability of industrial processes.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1592
Author(s):  
Dominik Gryboś ◽  
Jacek S. Leszczyński ◽  
Dorota Czopek ◽  
Jerzy Wiciak

In this paper, we demonstrate how to reduce the noise level of expanded air from pneumatic tools. Instead of a muffler, we propose the expanded collecting system, where the air expands through the pneumatic tube and expansion collector. We have elaborated a mathematical model which illustrates the dynamics of the air flow, as well as the acoustic pressure at the end of the tube. The computational results were compared with experimental data to check the air dynamics and sound pressure. Moreover, the study presents the methodology of noise measurement generated in a pneumatic screwdriver in a quiet back room and on a window-fitting stand in a production hall. In addition, we have performed noise measurements for the pneumatic screwdriver and the pneumatic screwdriver on an industrial scale. These measurements prove the noise reduction of the pneumatic tools when the expanded collecting system is used. When the expanded collecting system was applied to the screwdriver, the measured Sound Pressure Level (SPL) decreased from 87 to 80 dB(A).


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mykhaylo Tkach ◽  
Serhii Morhun ◽  
Yuri Zolotoy ◽  
Irina Zhuk

AbstractNatural frequencies and vibration modes of axial compressor blades are investigated. A refined mathematical model based on the usage of an eight-nodal curvilinear isoparametric finite element was applied. The verification of the model is carried out by finding the frequencies and vibration modes of a smooth cylindrical shell and comparing them with experimental data. A high-precision experimental setup based on an advanced method of time-dependent electronic interferometry was developed for this aim. Thus, the objective of the study is to verify the adequacy of the refined mathematical model by means of the advanced time-dependent electronic interferometry experimental method. The divergence of the results of frequency measurements between numerical calculations and experimental data does not exceed 5 % that indicates the adequacy and high reliability of the developed mathematical model. The developed mathematical model and experimental setup can be used later in the study of blades with more complex geometric and strength characteristics or in cases when the real boundary conditions or mechanical characteristics of material are uncertain.


Sign in / Sign up

Export Citation Format

Share Document