scholarly journals Simulation of Optical Nano-Manipulation with Metallic Single and Dual Probe Irradiated by Polarized Near-Field Laser

2022 ◽  
Vol 12 (2) ◽  
pp. 815
Author(s):  
Genwang Wang ◽  
Ye Ding ◽  
Haotian Long ◽  
Yanchao Guan ◽  
Xiwen Lu ◽  
...  

Nano-manipulation technology, as a kind of “bottom-up” tool, has exhibited an excellent capacity in the field of measurement and fabrication on the nanoscale. Although variety manipulation methods based on probes and microscopes were proposed and widely used due to locating and imaging with high resolution, the development of non-contacted schemes for these methods is still indispensable to operate small objects without damage. However, optical manipulation, especially near-field trapping, is a perfect candidate for establishing brilliant manipulation systems. This paper reports about simulations on the electric and force fields at the tips of metallic probes irradiated by polarized laser outputted coming from a scanning near-field optical microscope probe. Distributions of electric and force field at the tip of a probe have proven that the polarized laser can induce nanoscale evanescent fields with high intensity, which arouse effective force to move nanoparticles. Moreover, schemes with dual probes are also presented and discussed in this paper. Simulation results indicate that different combinations of metallic probes and polarized lasers will provide diverse near-field and corresponding optical force. With the suitable direction of probes and polarization direction, the dual probe exhibits higher trapping force and wider effective wavelength range than a single probe. So, these results give more novel and promising selections for realizing optical manipulation in experiments, so that distinguished multi-functional manipulation systems can be developed.

2014 ◽  
Vol 02 (02) ◽  
pp. 1440010
Author(s):  
QIAN WANG ◽  
SHIBIAO WEI ◽  
GUANGHUI YUAN ◽  
XIAO-CONG YUAN

In this paper, we report the observation of surface plasmon virtual probes in water by using near-field scanning optical microscope. The full-width half-maximum of the probe is as small as λ0/5.5. Such deep-subwavelength sized plasmonic virtual probe may lead to many potential applications, such as super-resolution fluorescence optical imaging and optical manipulation.


1997 ◽  
Vol 4 (1) ◽  
pp. A236-A239 ◽  
Author(s):  
Xing Zhu ◽  
Gui-Song Huang ◽  
He-Tian Zhou ◽  
Xiao Yang ◽  
Zhe Wang ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Young Chul Jun ◽  
Igal Brener

Near-field optical trapping of objects using plasmonic antenna structures has recently attracted great attention. However, metal nanostructures also provide a compact platform for general wavefront engineering of intermediate and far-field beams. Here, we analyze optical forces generated by plasmonic beam shaping antenna structures and show that they can be used for general optical manipulation such as guiding of a dielectric particle along a linear or curved trajectory. This removes the need for bulky diffractive optical components and facilitates the integration of optical force manipulation into a highly functional, compact system.


1997 ◽  
Vol 4 (1) ◽  
pp. 236-239 ◽  
Author(s):  
Xing Zhu ◽  
Gui-Song Huang ◽  
He-Tian Zhou ◽  
Xiao Yang ◽  
Zhe Wang ◽  
...  

Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


2015 ◽  
Vol 23 (04) ◽  
pp. 1540007 ◽  
Author(s):  
Guolong Liang ◽  
Wenbin Zhao ◽  
Zhan Fan

Direction of arrival (DOA) estimation is of great interest due to its wide applications in sonar, radar and many other areas. However, the near-field interference is always presented in the received data, which may result in degradation of DOA estimation. An approach which can suppress the near-field interference and preserve the far-field signal desired by using a spatial matrix filter is proposed in this paper and some typical DOA estimation algorithms are adjusted to match the filtered data. Simulation results show that the approach can improve capability of DOA estimation under near-field inference efficiently.


2020 ◽  
Vol 13 (6) ◽  
pp. 697-706
Author(s):  
Yuhong Wang ◽  
Kecheng Zhao ◽  
Fangjin Li ◽  
Qi Gao ◽  
King Wai Chiu Lai

AbstractThe microscopic surface features of asphalt binders are extensively reported in existing literature, but relatively fewer studies are performed on the morphology of asphaltene microstructures and cross-examination between the surface features and asphaltenes. This paper reports the findings of investigating six types of asphalt binders at the nanoscale, assisted with atomic force microscopy (AFM) and scanning transmission electron microscopy (STEM). The surface features of the asphalt binders were examined by using AFM before and after being repetitively peeled by a tape. Variations in infrared (IR) absorbance at the wavenumber around 1700 cm−1, which corresponds to ketones, were examined by using an infrared s-SNOM instrument (scattering-type scanning near-field optical microscope). Thin films of asphalt binders were examined by using STEM, and separate asphaltene particles were cross-examined by using both STEM and AFM. In addition, connections between the microstructures and binder’s physicochemical properties were evaluated. The use of both microscopy techniques provide comprehensive and complementary information on the microscopic nature of asphalt binders. It was found that the dynamic viscosities of asphalt binders are predominantly determined by the zero shear viscosity of the corresponding maltenes and asphaltene content. Limited samples also suggest that the unique bee structures are likely related to the growth of asphaltene content during asphalt binder aging process, but more asphalt binders from different crude sources are needed to verify this finding.


2021 ◽  
Vol 118 (4) ◽  
pp. 041103
Author(s):  
Xiao Guo ◽  
Karl Bertling ◽  
Aleksandar D. Rakić

Sign in / Sign up

Export Citation Format

Share Document