scholarly journals Review of Rock-Mass Rating and Tunneling Quality Index Systems for Tunnel Design: Development, Refinement, Application and Limitation

2018 ◽  
Vol 8 (8) ◽  
pp. 1250 ◽  
Author(s):  
Hafeezur Rehman ◽  
Wahid Ali ◽  
Abdul Naji ◽  
Jung-joo Kim ◽  
Rini Abdullah ◽  
...  

Although rock-mass rating (RMR) and tunneling quality index (Q) systems are used in different rock engineering projects as empirical design tools, their application in tunnel design is widely accepted as these systems were developed and updated for this purpose specifically. This paper reviews the work conducted by various researchers since the development of these two systems with respect to tunneling only. Compared to other empirical classification systems, these systems received international acceptance and are still used as empirical design tools in tunneling due to their continuous updates in the form of characterization and support. As the primary output of these systems is the initial support design for tunnel, however, their use in the calculation for rock-mass properties is an essential contribution of these systems in rock engineering design. Essential for the tunnel design, these rock-mass properties include the modulus of deformation, strength, Poisson’s ratio, Mohr-Coulomb parameters and Hoek-Brown constants. Other application for tunneling include the stand-up time and rock load. The uses and limitations of these systems as empirical tunnel design tools are also included in this review article for better results. Research to date indicates that if the ground behavior is also taken into account, the application of these empirical systems will be more beneficial to the preliminary design of tunnels.

2019 ◽  
Vol 9 (10) ◽  
pp. 2065 ◽  
Author(s):  
Jonguk Kim ◽  
Hafeezur Rehman ◽  
Wahid Ali ◽  
Abdul Muntaqim Naji ◽  
Hankyu Yoo

In extensively used empirical rock-mass classification systems, the rock-mass rating (RMR) and tunneling quality index (Q) system, rock-mass quality, and tunnel span are used for the selection of rock bolt length and spacing and shotcrete thickness. In both systems, the rock bolt spacing and shotcrete thickness selection are based on the same principle, which is used for the back-calculation of the rock-mass quality. For back-calculation, there is no criterion for the selection of rock-bolt-spacing-based rock-mass quality weightage and shotcrete thickness along with tunnel-span-based rock-mass quality weightage. To determine this weightage effect during the back-calculation, five weightage cases are selected, explained through example, and applied using published data. In the RMR system, the weightage effect is expressed in terms of the difference between the calculated and back-calculated rock-mass quality in the two versions of RMR. In the Q system, the weightage effect is presented in plots of stress reduction factor versus relative block size. The results show that the weightage effect during back-calculation not only depends on the difference in rock-bolt-spacing-based rock-mass quality and shotcrete along with tunnel-span-based rock-mass quality, but also on their corresponding values.


2009 ◽  
Vol 46 (6) ◽  
pp. 1042-1054 ◽  
Author(s):  
Jan Sundberg ◽  
Pär-Erik Back ◽  
Rolf Christiansson ◽  
Harald Hökmark ◽  
Märta Ländell ◽  
...  

Author(s):  
Beverly Yang ◽  
Amichai Mitelman ◽  
Davide Elmo ◽  
Doug Stead

Despite recent efforts, digitisation in rock engineering still suffers from the difficulty in standardising and statistically analysing databases that are created by a process of quantification of qualitative assessments. Indeed, neither digitisation nor digitalisation have to date been used to drive changes to the principles upon which, for example, the geotechnical data collection process is founded, some of which have not changed in several decades. There is an empirical knowledge gap which cannot be bridged by the use of technology alone. In this context, this paper presents the results of what the authors call a rediscovery of rock mass classification systems, and a critical review of their definitions and limitations in helping engineers to integrate these methods and digital acquisition systems. This discussion has significant implications for the use of technology as a tool to directly determine rock mass classification ratings and for the application of machine learning to address rock engineering problems.


Sign in / Sign up

Export Citation Format

Share Document