scholarly journals Multi-View Object Detection Based on Deep Learning

2018 ◽  
Vol 8 (9) ◽  
pp. 1423 ◽  
Author(s):  
Cong Tang ◽  
Yongshun Ling ◽  
Xing Yang ◽  
Wei Jin ◽  
Chao Zheng

A multi-view object detection approach based on deep learning is proposed in this paper. Classical object detection methods based on regression models are introduced, and the reasons for their weak ability to detect small objects are analyzed. To improve the performance of these methods, a multi-view object detection approach is proposed, and the model structure and working principles of this approach are explained. Additionally, the object retrieval ability and object detection accuracy of both the multi-view methods and the corresponding classical methods are evaluated and compared based on a test on a small object dataset. The experimental results show that in terms of object retrieval capability, Multi-view YOLO (You Only Look Once: Unified, Real-Time Object Detection), Multi-view YOLOv2 (based on an updated version of YOLO), and Multi-view SSD (Single Shot Multibox Detector) achieve AF (average F-measure) scores that are higher than those of their classical counterparts by 0.177, 0.06, and 0.169, respectively. Moreover, in terms of the detection accuracy, when difficult objects are not included, the mAP (mean average precision) scores of the multi-view methods are higher than those of the classical methods by 14.3%, 7.4%, and 13.1%, respectively. Thus, the validity of the approach proposed in this paper has been verified. In addition, compared with state-of-the-art methods based on region proposals, multi-view detection methods are faster while achieving mAPs that are approximately the same in small object detection.

2019 ◽  
Vol 11 (7) ◽  
pp. 786 ◽  
Author(s):  
Yang-Lang Chang ◽  
Amare Anagaw ◽  
Lena Chang ◽  
Yi Wang ◽  
Chih-Yu Hsiao ◽  
...  

Synthetic aperture radar (SAR) imagery has been used as a promising data source for monitoring maritime activities, and its application for oil and ship detection has been the focus of many previous research studies. Many object detection methods ranging from traditional to deep learning approaches have been proposed. However, majority of them are computationally intensive and have accuracy problems. The huge volume of the remote sensing data also brings a challenge for real time object detection. To mitigate this problem a high performance computing (HPC) method has been proposed to accelerate SAR imagery analysis, utilizing the GPU based computing methods. In this paper, we propose an enhanced GPU based deep learning method to detect ship from the SAR images. The You Only Look Once version 2 (YOLOv2) deep learning framework is proposed to model the architecture and training the model. YOLOv2 is a state-of-the-art real-time object detection system, which outperforms Faster Region-Based Convolutional Network (Faster R-CNN) and Single Shot Multibox Detector (SSD) methods. Additionally, in order to reduce computational time with relatively competitive detection accuracy, we develop a new architecture with less number of layers called YOLOv2-reduced. In the experiment, we use two types of datasets: A SAR ship detection dataset (SSDD) dataset and a Diversified SAR Ship Detection Dataset (DSSDD). These two datasets were used for training and testing purposes. YOLOv2 test results showed an increase in accuracy of ship detection as well as a noticeable reduction in computational time compared to Faster R-CNN. From the experimental results, the proposed YOLOv2 architecture achieves an accuracy of 90.05% and 89.13% on the SSDD and DSSDD datasets respectively. The proposed YOLOv2-reduced architecture has a similarly competent detection performance as YOLOv2, but with less computational time on a NVIDIA TITAN X GPU. The experimental results shows that the deep learning can make a big leap forward in improving the performance of SAR image ship detection.


Author(s):  
Seokyong Shin ◽  
Hyunho Han ◽  
Sang Hun Lee

YOLOv3 is a deep learning-based real-time object detector and is mainly used in applications such as video surveillance and autonomous vehicles. In this paper, we proposed an improved YOLOv3 (You Only Look Once version 3) applied Duplex FPN, which enhanced large object detection by utilizing low-level feature information. The conventional YOLOv3 improved the small object detection performance by applying FPN (Feature Pyramid Networks) structure to YOLOv2. However, YOLOv3 with an FPN structure specialized in detecting small objects, so it is difficult to detect large objects. Therefore, this paper proposed an improved YOLOv3 applied Duplex FPN, which can utilize low-level location information in high-level feature maps instead of the existing FPN structure of YOLOv3. This improved the detection accuracy of large objects. Also, an extra detection layer was added to the top-level feature map to prevent failure of detection of parts of large objects. Further, dimension clusters of each detection layer were reassigned to learn quickly how to accurately detect objects. The proposed method was compared and analyzed in the PASCAL VOC dataset. The experimental results showed that the bounding box accuracy of large objects improved owing to the Duplex FPN and extra detection layer, and the proposed method succeeded in detecting large objects that the existing YOLOv3 did not.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3374
Author(s):  
Hansen Liu ◽  
Kuangang Fan ◽  
Qinghua Ouyang ◽  
Na Li

To address the threat of drones intruding into high-security areas, the real-time detection of drones is urgently required to protect these areas. There are two main difficulties in real-time detection of drones. One of them is that the drones move quickly, which leads to requiring faster detectors. Another problem is that small drones are difficult to detect. In this paper, firstly, we achieve high detection accuracy by evaluating three state-of-the-art object detection methods: RetinaNet, FCOS, YOLOv3 and YOLOv4. Then, to address the first problem, we prune the convolutional channel and shortcut layer of YOLOv4 to develop thinner and shallower models. Furthermore, to improve the accuracy of small drone detection, we implement a special augmentation for small object detection by copying and pasting small drones. Experimental results verify that compared to YOLOv4, our pruned-YOLOv4 model, with 0.8 channel prune rate and 24 layers prune, achieves 90.5% mAP and its processing speed is increased by 60.4%. Additionally, after small object augmentation, the precision and recall of the pruned-YOLOv4 almost increases by 22.8% and 12.7%, respectively. Experiment results verify that our pruned-YOLOv4 is an effective and accurate approach for drone detection.


Author(s):  
Runze Liu ◽  
Guangwei Yan ◽  
Hui He ◽  
Yubin An ◽  
Ting Wang ◽  
...  

Background: Power line inspection is essential to ensure the safe and stable operation of the power system. Object detection for tower equipment can significantly improve inspection efficiency. However, due to the low resolution of small targets and limited features, the detection accuracy of small targets is not easy to improve. Objective: This study aimed to improve the tiny targets’ resolution while making the small target's texture and detailed features more prominent to be perceived by the detection model. Methods: In this paper, we propose an algorithm that employs generative adversarial networks to improve small objects' detection accuracy. First, the original image is converted into a super-resolution one by a super-resolution reconstruction network (SRGAN). Then the object detection framework Faster RCNN is utilized to detect objects on the super-resolution images. Result: The experimental results on two small object recognition datasets show that the model proposed in this paper has good robustness. It can especially detect the targets missed by Faster RCNN, which indicates that SRGAN can effectively enhance the detailed information of small targets by improving the resolution. Conclusion: We found that higher resolution data is conducive to obtaining more detailed information of small targets, which can help the detection algorithm achieve higher accuracy. The small object detection model based on the generative adversarial network proposed in this paper is feasible and more efficient. Compared with Faster RCNN, this model has better performance on small object detection.


2021 ◽  
Author(s):  
Zhang Zhenghua ◽  
Jiang Ling ◽  
Hong Qingqing

2019 ◽  
Vol 26 (6) ◽  
pp. 597-606 ◽  
Author(s):  
Lu Yan ◽  
Masahiro Yamaguchi ◽  
Naoki Noro ◽  
Yohei Takara ◽  
Fuminori Ando

2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Nhat-Duy Nguyen ◽  
Tien Do ◽  
Thanh Duc Ngo ◽  
Duy-Dinh Le

Small object detection is an interesting topic in computer vision. With the rapid development in deep learning, it has drawn attention of several researchers with innovations in approaches to join a race. These innovations proposed comprise region proposals, divided grid cell, multiscale feature maps, and new loss function. As a result, performance of object detection has recently had significant improvements. However, most of the state-of-the-art detectors, both in one-stage and two-stage approaches, have struggled with detecting small objects. In this study, we evaluate current state-of-the-art models based on deep learning in both approaches such as Fast RCNN, Faster RCNN, RetinaNet, and YOLOv3. We provide a profound assessment of the advantages and limitations of models. Specifically, we run models with different backbones on different datasets with multiscale objects to find out what types of objects are suitable for each model along with backbones. Extensive empirical evaluation was conducted on 2 standard datasets, namely, a small object dataset and a filtered dataset from PASCAL VOC 2007. Finally, comparative results and analyses are then presented.


Sign in / Sign up

Export Citation Format

Share Document