scholarly journals Gene Selection in Cancer Classification Using Sparse Logistic Regression with L1/2 Regularization

2018 ◽  
Vol 8 (9) ◽  
pp. 1569 ◽  
Author(s):  
Shengbing Wu ◽  
Hongkun Jiang ◽  
Haiwei Shen ◽  
Ziyi Yang

In recent years, gene selection for cancer classification based on the expression of a small number of gene biomarkers has been the subject of much research in genetics and molecular biology. The successful identification of gene biomarkers will help in the classification of different types of cancer and improve the prediction accuracy. Recently, regularized logistic regression using the L 1 regularization has been successfully applied in high-dimensional cancer classification to tackle both the estimation of gene coefficients and the simultaneous performance of gene selection. However, the L 1 has a biased gene selection and dose not have the oracle property. To address these problems, we investigate L 1 / 2 regularized logistic regression for gene selection in cancer classification. Experimental results on three DNA microarray datasets demonstrate that our proposed method outperforms other commonly used sparse methods ( L 1 and L E N ) in terms of classification performance.

2012 ◽  
Vol 43 (14) ◽  
pp. 13-18 ◽  
Author(s):  
Vibhav PrakashSingh ◽  
Singh Gaurav Arvind ◽  
Arindam G Mahapatra

2019 ◽  
Vol 53 (1) ◽  
pp. 269-288 ◽  
Author(s):  
Ahmed Bir-Jmel ◽  
Sidi Mohamed Douiri ◽  
Souad Elbernoussi

Gene expression data (DNA microarray) enable researchers to simultaneously measure the levels of expression of several thousand genes. These levels of expression are very important in the classification of different types of tumors. In this work, we are interested in gene selection, which is an essential step in the data pre-processing for cancer classification. This selection makes it possible to represent a small subset of genes from a large set, and to eliminate the redundant, irrelevant or noisy genes. The combinatorial nature of the selection problem requires the development of specific techniques such as filters and Wrappers, or hybrids combining several optimization processes. In this context, we propose two hybrid approaches (RBPSO-1NN and FBPSO-SVM) for the gene selection problem, based on the combination of the filter methods (the Fisher criterion and the ReliefF algorithm), the BPSO metaheuristic algorithms and the Backward algorithm using the classifiers (SVM and 1NN) for the evaluation of the relevance of the candidate subsets. In order to verify the performance of our methods, we have tested them on eight well-known microarray datasets of high dimensions varying from 2308 to 11225 genes. The experiments carried out on the different datasets show that our methods prove to be very competitive with the existing works.


2013 ◽  
Vol 14 (1) ◽  
Author(s):  
Yong Liang ◽  
Cheng Liu ◽  
Xin-Ze Luan ◽  
Kwong-Sak Leung ◽  
Tak-Ming Chan ◽  
...  

2005 ◽  
Vol 01 (01) ◽  
pp. 129-145 ◽  
Author(s):  
XIAOBO ZHOU ◽  
XIAODONG WANG ◽  
EDWARD R. DOUGHERTY

In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables (gene expressions) and the small number of experimental conditions. Many gene-selection and classification methods have been proposed; however most of these treat gene selection and classification separately, and not under the same model. We propose a Bayesian approach to gene selection using the logistic regression model. The Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the minimum description length (MDL) principle are used in constructing the posterior distribution of the chosen genes. The same logistic regression model is then used for cancer classification. Fast implementation issues for these methods are discussed. The proposed methods are tested on several data sets including those arising from hereditary breast cancer, small round blue-cell tumors, lymphoma, and acute leukemia. The experimental results indicate that the proposed methods show high classification accuracies on these data sets. Some robustness and sensitivity properties of the proposed methods are also discussed. Finally, mixing logistic-regression based gene selection with other classification methods and mixing logistic-regression-based classification with other gene-selection methods are considered.


2021 ◽  
Vol 29 ◽  
pp. 287-295
Author(s):  
Zhiming Zhou ◽  
Haihui Huang ◽  
Yong Liang

BACKGROUND: In genome research, it is particularly important to identify molecular biomarkers or signaling pathways related to phenotypes. Logistic regression model is a powerful discrimination method that can offer a clear statistical explanation and obtain the classification probability of classification label information. However, it is unable to fulfill biomarker selection. OBJECTIVE: The aim of this paper is to give the model efficient gene selection capability. METHODS: In this paper, we propose a new penalized logsum network-based regularization logistic regression model for gene selection and cancer classification. RESULTS: Experimental results on simulated data sets show that our method is effective in the analysis of high-dimensional data. For a large data set, the proposed method has achieved 89.66% (training) and 90.02% (testing) AUC performances, which are, on average, 5.17% (training) and 4.49% (testing) better than mainstream methods. CONCLUSIONS: The proposed method can be considered a promising tool for gene selection and cancer classification of high-dimensional biological data.


2018 ◽  
Vol 45 (9) ◽  
pp. 4112-4124 ◽  
Author(s):  
Hoda Nemat ◽  
Hamid Fehri ◽  
Nasrin Ahmadinejad ◽  
Alejandro F. Frangi ◽  
Ali Gooya

Sign in / Sign up

Export Citation Format

Share Document