scholarly journals A Mixed Property-Based Automatic Shadow Detection Approach for VHR Multispectral Remote Sensing Images

2018 ◽  
Vol 8 (10) ◽  
pp. 1883 ◽  
Author(s):  
Hongyin Han ◽  
Chengshan Han ◽  
Xucheng Xue ◽  
Changhong Hu ◽  
Liang Huang ◽  
...  

Shadows in very high-resolution multispectral remote sensing images hinder many applications, such as change detection, target recognition, and image classification. Though a wide variety of significant research has explored shadow detection, shadow pixels are still more or less omitted and are wrongly confused with vegetation pixels in some cases. In this study, to further manage the problems of shadow omission and vegetation misclassification, a mixed property-based shadow index is developed for detecting shadows in very high-resolution multispectral remote sensing images based on the difference of the hue component and the intensity component between shadows and nonshadows, and the difference of the reflectivity of the red band and the near infrared band between shadows and vegetation cover in nonshadows. Then, the final shadow mask is achieved, with an optimal threshold automatically obtained from the index image histogram. To validate the effectiveness of our approach for shadow detection, three test images are selected from the multispectral WorldView-3 images of Rio de Janeiro, Brazil, and are tested with our method. When compared with other investigated standard shadow detection methods, the resulting images produced by our method deliver a higher average overall accuracy (95.02%) and a better visual sense. The highly accurate data show the efficacy and stability of the proposed approach in appropriately detecting shadows and correctly classifying shadow pixels against the vegetation pixels for very high-resolution multispectral remote sensing images.

2020 ◽  
Vol 10 (18) ◽  
pp. 6467 ◽  
Author(s):  
Hongyin Han ◽  
Chengshan Han ◽  
Taiji Lan ◽  
Liang Huang ◽  
Changhong Hu ◽  
...  

Shadow often results in difficulties for subsequent image applications of multispectral satellite remote sensing images, like object recognition and change detection. With continuous improvement in both spatial and spectral resolutions of satellite remote sensing images, a more serious impact occurs on satellite remote sensing image interpretation due to the existence of shadow. Though various shadow detection methods have been developed, problems of both shadow omission and nonshadow misclassification still exist for detecting shadow well in high-resolution multispectral satellite remote sensing images. These shadow detection problems mainly include high small shadow omission and typical nonshadow misclassification (like bluish and greenish nonshadow misclassification, and large dark nonshadow misclassification). For further resolving these problems, a new shadow index is developed based on the analysis of the property difference between shadow and the corresponding nonshadow with several multispectral band components (i.e., near-infrared, red, green and blue components) and hue and intensity components in various invariant color spaces (i.e., HIS, HSV, CIELCh, YCbCr and YIQ), respectively. The shadow mask is further acquired by applying an optimal threshold determined automatically on the shadow index image. The final shadow image is further optimized with a definite morphological operation of opening and closing. The proposed algorithm is verified with many images from WorldView-3 and WorldView-2 acquired at different times and sites. The proposed algorithm performance is particularly evaluated by qualitative visual sense comparison and quantitative assessment of shadow detection results in comparative experiments with two WorldView-3 test images of Tripoli, Libya. Both the better visual sense and the higher overall accuracy (over 92% for the test image Tripoli-1 and approximately 91% for the test image Tripoli-2) of the experimental results together deliver the excellent performance and robustness of the proposed shadow detection approach for shadow detection of high-resolution multispectral satellite remote sensing images. The proposed shadow detection approach is promised to further alleviate typical shadow detection problems of high small shadow omission and typical nonshadow misclassification for high-resolution multispectral satellite remote sensing images.


2020 ◽  
Vol 9 (6) ◽  
pp. 370
Author(s):  
Atakan Körez ◽  
Necaattin Barışçı ◽  
Aydın Çetin ◽  
Uçman Ergün

The detection of objects in very high-resolution (VHR) remote sensing images has become increasingly popular with the enhancement of remote sensing technologies. High-resolution images from aircrafts or satellites contain highly detailed and mixed backgrounds that decrease the success of object detection in remote sensing images. In this study, a model that performs weighted ensemble object detection using optimized coefficients is proposed. This model uses the outputs of three different object detection models trained on the same dataset. The model’s structure takes two or more object detection methods as its input and provides an output with an optimized coefficient-weighted ensemble. The Northwestern Polytechnical University Very High Resolution 10 (NWPU-VHR10) and Remote Sensing Object Detection (RSOD) datasets were used to measure the object detection success of the proposed model. Our experiments reveal that the proposed model improved the Mean Average Precision (mAP) performance by 0.78%–16.5% compared to stand-alone models and presents better mean average precision than other state-of-the-art methods (3.55% higher on the NWPU-VHR-10 dataset and 1.49% higher when using the RSOD dataset).


2018 ◽  
Vol 56 (2) ◽  
pp. 867-876 ◽  
Author(s):  
Xudong Kang ◽  
Yufan Huang ◽  
Shutao Li ◽  
Hui Lin ◽  
Jon Atli Benediktsson

2021 ◽  
Vol 13 (22) ◽  
pp. 4528
Author(s):  
Xin Yang ◽  
Lei Hu ◽  
Yongmei Zhang ◽  
Yunqing Li

Remote sensing image change detection (CD) is an important task in remote sensing image analysis and is essential for an accurate understanding of changes in the Earth’s surface. The technology of deep learning (DL) is becoming increasingly popular in solving CD tasks for remote sensing images. Most existing CD methods based on DL tend to use ordinary convolutional blocks to extract and compare remote sensing image features, which cannot fully extract the rich features of high-resolution (HR) remote sensing images. In addition, most of the existing methods lack robustness to pseudochange information processing. To overcome the above problems, in this article, we propose a new method, namely MRA-SNet, for CD in remote sensing images. Utilizing the UNet network as the basic network, the method uses the Siamese network to extract the features of bitemporal images in the encoder separately and perform the difference connection to better generate difference maps. Meanwhile, we replace the ordinary convolution blocks with Multi-Res blocks to extract spatial and spectral features of different scales in remote sensing images. Residual connections are used to extract additional detailed features. To better highlight the change region features and suppress the irrelevant region features, we introduced the Attention Gates module before the skip connection between the encoder and the decoder. Experimental results on a public dataset of remote sensing image CD show that our proposed method outperforms other state-of-the-art (SOTA) CD methods in terms of evaluation metrics and performance.


2020 ◽  
Vol 12 (18) ◽  
pp. 2985 ◽  
Author(s):  
Yeneng Lin ◽  
Dongyun Xu ◽  
Nan Wang ◽  
Zhou Shi ◽  
Qiuxiao Chen

Automatic road extraction from very-high-resolution remote sensing images has become a popular topic in a wide range of fields. Convolutional neural networks are often used for this purpose. However, many network models do not achieve satisfactory extraction results because of the elongated nature and varying sizes of roads in images. To improve the accuracy of road extraction, this paper proposes a deep learning model based on the structure of Deeplab v3. It incorporates squeeze-and-excitation (SE) module to apply weights to different feature channels, and performs multi-scale upsampling to preserve and fuse shallow and deep information. To solve the problems associated with unbalanced road samples in images, different loss functions and backbone network modules are tested in the model’s training process. Compared with cross entropy, dice loss can improve the performance of the model during training and prediction. The SE module is superior to ResNext and ResNet in improving the integrity of the extracted roads. Experimental results obtained using the Massachusetts Roads Dataset show that the proposed model (Nested SE-Deeplab) improves F1-Score by 2.4% and Intersection over Union by 2.0% compared with FC-DenseNet. The proposed model also achieves better segmentation accuracy in road extraction compared with other mainstream deep-learning models including Deeplab v3, SegNet, and UNet.


Sign in / Sign up

Export Citation Format

Share Document