scholarly journals A Study on the Forming Characteristics of AZ 31B Mg Alloy in a Combined Forward–Backward Extrusion at Warm Temperatures

2018 ◽  
Vol 8 (11) ◽  
pp. 2187 ◽  
Author(s):  
Duk Yoon ◽  
Eung-Zu Kim ◽  
Kyoung Na ◽  
Yong-Shin Lee

This paper was on the forming characteristics of AZ 31B Mg alloy in a combined forward–backward extrusion (CFBE) at warm temperatures. Both experimental studies and thermomechanical finite element analyses were performed. A finite element analysis model coupled with damage evolution was presented. Based on our previous work, the forward extrusion ratio, backward extrusion ratio, forming temperature, and punch speed were chosen as the most important process parameters. Two punch speeds of 2 mm/s and 20 mm/s were examined for the forming temperatures of 180 °C and 200 °C. Forward extrusion ratios were 2.25, 4.0, and 9.0, while backward extrusion ratios were 1.33, 2.16, 4.02, and 7.75. Effects of those parameters on the forming limit, deformation behaviors, extrusion load, and the mechanical properties of an extruded product were discussed in detail.

2021 ◽  
Vol 11 (9) ◽  
pp. 3900
Author(s):  
Heng-Sheng Lin ◽  
Chien-Yu Lee ◽  
Wen-Shun Li

Metal flow tends to be complex and difficult to predict in the combined forward-backward extrusion (CFBE) process. Piercing and surface-crack defects are phenomenal in forming fasteners featuring a forward extruded pin and a backward extruded cup. In this work, a series of the CFBE tests with various combinations of the forward extrusion ratio (FER) and the backward extrusion ratio (BER) were conducted. A forming limit diagram, detailed with the piercing and surface-crack defects on the forward extruded pin or the backward extruded cup, was developed to provide a conception in choosing appropriate extrusion ratios in forming fasteners with such pin-and-cup features. With the aid of the forming load-stroke curves and the finite element analysis of fracture damage, the fracturing mechanism for the CFBE process was provided.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 228 ◽  
Author(s):  
Byungho Park ◽  
Bryan Taekyung Jung ◽  
Won Hyeon Kim ◽  
Jong-Ho Lee ◽  
Bongju Kim ◽  
...  

Recently, a hydroxyapatite particle/poly-L-lactide (HA-PLLA) composite device was introduced as an alternative to previous fixation systems. In this study, we used finite element analysis to simulate peak von Mises stress (PVMS) and deformation of bone plates and screws with the following four materials—Ti, Mg alloy, PLLA, and HA-PLLA—at a unilateral mandibular fracture. A three-dimensional virtual mandibular model was constructed, and the fracture surface was designed to run from the left mandibular angle. Masticatory loading was applied on the right first molars. Stress was concentrated at the upper part and the neck of the screw. The largest PVMS was observed for Ti; that was followed by Mg alloy, HA-PLLA, and PLLA. The largest deformation was observed for PLLA; next was HA-PLLA, then Mg alloy, and finally Ti. We could rank relative superiority in terms of mechanical properties. The HA-PLLA screw and mini-plate deformed less than 0.15 mm until 300 N. Thus, we can expect good bone healing with usual masticatory loading six weeks postoperatively. HA-PLLA is more frequently indicated clinically than PLLA owing to less deformation. If the quality of HA-PLLA fixation is improved, it could be widely utilized in facial bone trauma or craniofacial surgery.


2012 ◽  
Vol 24 (3) ◽  
pp. 326-333 ◽  
Author(s):  
Yu-Chi Chen ◽  
Wen-Ching Ko ◽  
Han-Lung Chen ◽  
Hsu-Ching Liao ◽  
Wen-Jong Wu ◽  
...  

We propose a model to give us a method to investigate the characteristic three-dimensional directivity in an arbitrarily configured flexible electret-based loudspeaker. In recent years, novel electret loudspeakers have attracted much interest due to their being lightweight, paper thin, and possessing excellent mid- to high-frequency responses. Increasing or decreasing the directivity of an electret loudspeaker makes it excellent for adoption to many applications, especially for directing sound to a particular area or specific audio location. Herein, we detail a novel electret loudspeaker that possesses various directivities and is based on various structures of spacers instead of having to use multichannel amplifiers and a complicated digital control system. In order to study the directivity of an electret loudspeaker based on an array structure which can be adopted for various applications, the horizontal and vertical polar directivity characteristics as a function of frequency were simulated by a finite-element analysis model. To validate the finite-element analysis model, the beam pattern of the electret loudspeaker was measured in an anechoic room. Both the simulated and experimental results are detailed in this article to validate the various assertions related to the directivity of electret cell-based smart speakers.


2013 ◽  
Vol 690-693 ◽  
pp. 2327-2330
Author(s):  
Ming Bo Han ◽  
Li Fei Sun

By using finite element software, the paper establishes the main stand analysis model of the Ф140 pipe rolling mill and provides the model analysis of main stand in cases of full load. Verify the design of main stand fully comply with the technical requirements .In this paper, it provides the theoretical position of split casting and welding method using electric slag welding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charles Savoldelli ◽  
Elodie Ehrmann ◽  
Yannick Tillier

AbstractWith modern-day technical advances, high sagittal oblique osteotomy (HSOO) of the mandible was recently described as an alternative to bilateral sagittal split osteotomy for the correction of mandibular skeletal deformities. However, neither in vitro nor numerical biomechanical assessments have evaluated the performance of fixation methods in HSOO. The aim of this study was to compare the biomechanical characteristics and stress distribution in bone and osteosynthesis fixations when using different designs and placing configurations, in order to determine a favourable plating method. We established two finite element models of HSOO with advancement (T1) and set-back (T2) movements of the mandible. Six different configurations of fixation of the ramus, progressively loaded by a constant force, were assessed for each model. The von Mises stress distribution in fixations and in bone, and bony segment displacement, were analysed. The lowest mechanical stresses and minimal gradient of displacement between the proximal and distal bony segments were detected in the combined one-third anterior- and posterior-positioned double mini-plate T1 and T2 models. This suggests that the appropriate method to correct mandibular deformities in HSOO surgery is with use of double mini-plates positioned in the anterior one-third and posterior one-third between the bony segments of the ramus.


Author(s):  
Dinesh Shinde ◽  
Mukesh Bulsara ◽  
Jeet Patil

Brake friction lining material is the critical element of a braking system, since it provides friction resistance to the rotating drum for controlling automobiles. The present study involves wear analysis of newly developed eco-friendly non-asbestos friction lining material for automotive drum brake applications using experimental study, finite-element analysis, and microstructural investigations. Theoretical interpretation of braking force at different automobile speeds was derived using fundamentals. Specimen drum brake liner with eco-friendly material compositions was produced using an industrial hot compression molding process at one of the manufacturer. The surface wear of the liner was measured using an effective and accurate method. Furthermore, a finite-element analysis model was developed considering actual operating conditions and various components of the drum brake system. The model was elaborated for various result outcomes, including Von-Mises stresses and total deformation of components of the drum brake, and further used to estimate the surface wear of the friction lining material in terms of transverse directional deformation. Finally, microstructural analysis of the friction lining material was carried out using scanning electron microscopy and energy dispersive spectroscopy. From the results, it is seen that the developed friction lining material is wear resistant. The finite-element analysis model can be effectively utilized to study the tribological characteristics of friction lining materials.


1999 ◽  
Author(s):  
H.-J. Chun ◽  
S. W. Lee ◽  
I. M. Daniel

Abstract A finite element analysis model was developed to predict flexural behavior of thick composites with uniform, graded and localized fiber waviness. In the analyses, material and geometrical nonlinearties due to fiber waviness were incorporated into the model utilizing energy density and an incremental method. In the model, two kinds of geometrical nonlinearity were considered, one due to reorientation of fibers and the other due to difference of curvatures from one finite element to another during deformation. The finite element analyses utilize the iterative mapping method to incorporate these geometrical nonlinear factors. The model was used to predict not only the flexural behavior of a flat thick composite plate but also of a thick composite plate with initial curvature. Flat composite specimens with various degrees of fiber waviness were fabricated and four-point flexural tests were conducted. The predicted nonlinear behavior by the current model was compared with results from the thin slice model [7] and experiments. Good agreement was observed among them.


1999 ◽  
Author(s):  
Partha S. Das

Abstract Harbor Branch Oceanographic Institution (HBOI) designed, built and has operated two JOHNSON-SEA-LINK (JSL) manned submersibles for the past 25 years. The JSL submersibles each incorporate a 66–68 in. (1.6764–1.7272 m) OD, 4–5.25 in. (0.1016–0.13335 m) thick acrylic two-man sphere as a Pressure Vessel for Human Occupancy (PVHO). This type of spherical acrylic sphere or submersible was first introduced in around 1970 and is known as Naval Experimental Manned Observatory (NEMO) submersibles. As the demand increases for ocean exploration to 3000 ft. (914.4 m) depth to collect samples, to study the ocean surfaces, the problem of developing cracks at the interface of these manned acrylic submersibles following few hundred dives have become a common phenomena. This has drawn considerable attentions for reinvestigation of the spherical acrylic submersible in order to overcome this crack generation problem at the interface. Therefore, a new full-scale 3-D nonlinear FEA (Finite Element Analysis) model, similar to the spherical acrylic submersible that HBOI uses for ocean exploration, has been developed for the first time in order to simulate the structural behavior at the interface and throughout the sphere, for better understanding of the mechanical behavior. Variation of the stiffness between dissimilar materials at the interface, lower nylon gasket thickness, over designed aluminum hatch are seemed to be few of the causes for higher stresses within acrylic sphere at the nylon gasket/acrylic interface. Following the basic understanding of the stresses and relative displacements at the interface and within different parts of the submersible, various models have been developed on the basis of different shapes and thickness of nylon gaskets, openings of the acrylic sphere, hatch geometry and its materials, specifically to study their effect on the overall performance of the acrylic submersible. Finally, the new model for acrylic submersible has been developed by redesigning the top aluminum hatch and hatch ring, the sphere openings at both top and bottom, as well as the nylon gasket inserts. Altogether this new design indicates a significant improvement over the existing spherical acrylic submersible by reducing the stresses at the top gasket/acrylic interface considerably. Redesigning of the bottom penetrator plate, at present, is underway. In this paper, results from numerical modeling only are reported in details. Correlation between experimental-numerical modeling results for the new model will be reported in the near future.


Sign in / Sign up

Export Citation Format

Share Document