scholarly journals Peridynamic Analysis of Rail Squats

2018 ◽  
Vol 8 (11) ◽  
pp. 2299 ◽  
Author(s):  
Andris Freimanis ◽  
Sakdirat Kaewunruen

Rail surface defects are a serious concern for railway infrastructure managers all around the world. They lead to poor ride quality due to excess vibration and noise; in rare cases, they can result in a broken rail and a train derailment. Defects are typically classified as ‘rail studs’ when they initiate from the white etching layer, and ‘rail squats’ when they initiate from rolling contact fatigue. This paper presents a novel investigation into rail squat initiation and growth simulations using peridynamic theory. To the best of the authors’ knowledge, no other comprehensive study of rail squats has been carried out using this approach. Peridynamics are well-suited for fracture problems, because, contrary to continuum mechanics, they do not use partial-differential equations. Instead, peridynamics use integral equations that are defined even when discontinuities (cracks, etc.) are present in the displacement field. In this study, a novel application of peridynamics to rail squats is verified against a finite element solution, and the obtained simulation results are compared with in situ rail squat measurements. Some new insights can be drawn from the results. The outcome exhibits that the simulated cracks initiate and grow unsymmetrically, as expected and reported in the field. Based on this new insight, it is apparent that peridynamic modelling is well-applicable to fatigue crack modeling in rails. Surprisingly, limitations to the peridynamic analysis code have also been discovered. Future work requires finding an adequate solution to the matter-interpenetration problem.

2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Zamzam Golmohammadi ◽  
Farshid Sadeghi

A coupled multibody elastic–plastic finite element (FE) model was developed to investigate the effects of surface defects, such as dents on rolling contact fatigue (RCF). The coupled Voronoi FE model was used to determine the contact pressure acting over the surface defect, internal stresses, damage, etc. In order to determine the shape of a dent and material pile up during the over rolling process, a rigid indenter was pressed against an elastic plastic semi-infinite domain. Continuum damage mechanics (CDM) was used to account for material degradation during RCF. Using CDM, spall initiation and propagation in a line contact was modeled and investigated. A parametric study using the model was performed to examine the effects of dent sharpness, pile up ratio, and applied load on the spall formation and fatigue life. The spall patterns were found to be consistent with experimental observations from the open literature. Moreover, the results demonstrated that the dent shape and sharpness had a significant effect on pressure and thus fatigue life. Higher dent sharpness ratios significantly reduced the fatigue life.


2013 ◽  
Vol 683 ◽  
pp. 90-93 ◽  
Author(s):  
Koshiro Mizobe ◽  
Takashi Honda ◽  
Hitonobu Koike ◽  
Edson Costa Santos ◽  
Yuji Kashima ◽  
...  

Polyetheretherketone (PEEK) is a tough semi-crystalline thermoplastic polymer with excellent mechanical properties. While abilities of polyphenylenesulfide (PPS) are similar to PEEK, former material cost was lower than later. Polytetrafluoroethylene (PTFE) is well known because of its low friction coefficient and self lubrication ability. The objective of this study is to observe the friction coefficient of hybrid bearings, PTFE retainer sandwiched with PPS-races or PEEK-races. Rolling contact fatigue tests were performed and in situ friction forces wear measured. It is concluded that the PTFE retainer reduced friction coefficient.


2010 ◽  
Vol 654-656 ◽  
pp. 2499-2502 ◽  
Author(s):  
Chan Woo Lee ◽  
Seok Jin Kwon

Wheels of the railway vehicle play the important role for driving train through wheel-rail interaction. Especially wheel profile is one of the most important design factors to rule the running stability and safety of train. Accordingly, the control of rolling contact fatigue-related defects is an ongoing concern for both safety and cost reasons. This process is referred to as ratcheting. Wear of wheel and rail surfaces occur due to a mixture of adhesive, abrasive and corrosive processes. In wheel/rail systems with little wear, such failure is manifested by the appearance of closely spaced micro-cracks. In the present paper, a evaluation of surface defects of wheel and rail for Korean high-speed railway. The main research application is the wheel-rail maintenance of Korea high-speed train.


Wear ◽  
1999 ◽  
Vol 225-229 ◽  
pp. 983-994 ◽  
Author(s):  
N. Gao ◽  
R.S. Dwyer-Joyce ◽  
J.H. Beynon

2021 ◽  
Vol 6 (5) ◽  
pp. 63
Author(s):  
Nikhil Pillai ◽  
Jou-Yi Shih ◽  
Clive Roberts

Switch and crossing (S&C) faults are a major cause of track-related delays and account for a significant proportion of maintenance and renewal budgets for railway infrastructure managers around the world. Although various modelling approaches have been proposed in the literature for the simulation of vehicle–track dynamic interaction, wheel–rail contact and damage prediction, there is a lack of evaluation for combining these approaches to effectively predict the failure mechanism. An evaluation of S&C modelling approaches has therefore been performed in this article to justify their selection for the research interests of predicting the most dominant failure mechanisms of wear, rolling contact fatigue (RCF) and plastic deformation in S&C rails by recognising the factors that influence the accuracy and efficiency of the proposed modelling approaches. A detailed discussion of the important modelling aspects has been carried out by considering the effectiveness of each individual approach and the combination of different approaches, along with a suggestion of appropriate modelling approaches for predicting the dominant failure mechanisms.


Author(s):  
S. Fukagai ◽  
M. Watson ◽  
H. P. Brunskill ◽  
A. K. Hunter ◽  
M. B. Marshall ◽  
...  

Understanding the dynamic condition of the interface between a railway wheel and rail is important to reduce the risks and consider the effectiveness of countermeasures for tribological problems. Traditionally the difficulty in obtaining accurate non-destructive interfacial measurements has hindered systematic experimental investigations. Recently, an ultrasound reflectometry technique has been developed as a direct observation method of a rolling–sliding interface; however, the topography dependence under the high contact pressures in a wheel–rail contact has not been clarified. For this reason, a novel in situ measurement of the contact stiffness using ultrasound reflectometry was carried out for three different levels of roughness. A contact pressure equivalent to that in a wheel–rail interface was achieved by using a high-pressure torsion test approach. The dynamic change of contact stiffness with slip was measured using ultrasound and the influence of roughness was investigated. The measured changes were validated using a newly developed numerical simulation, and mechanisms to explain the observed behaviour were proposed in terms of fracture and plastic deformation of the asperity bonds. These findings could help in understanding the traction characteristics for different roughness conditions and also assist in understanding damage mechanisms better, such as wear and rolling contact fatigue.


2007 ◽  
Vol 353-358 ◽  
pp. 254-257
Author(s):  
Guan Chen ◽  
Hong Ping Zhao ◽  
Shao Hua Ji ◽  
Xi Qiao Feng ◽  
Hui Ji Shi

Rolling contact fatigue (RCF) cracks initiated from surface and subsurface defects are typical failure modes of bearing systems. In this paper, the effects of surface defects on RCF behavior of M50NiL and M50 steels were studied experimentally. Artificial dents were introduced on the rolling surface by using Rockwell hardness tester. The influences of dent shape and dent shoulders were examined by thrust-type RCF tests. Surface cracks initiation, propagation and spalling were monitored by scanning electron microscope (SEM) observation. The results showed that artificial dents reduce RCF lives of M50NiL and M50 steels with mineral oil lubrication. The fatigue failure initiates at the surface defect with the effects of dent shape and dent shoulder. M50NiL steel has higher contact fatigue resistance than M50. The features of surface and sub-surface cracks propagation during RCF tests were also observed.


Sign in / Sign up

Export Citation Format

Share Document