scholarly journals A Deep Temporal Neural Music Recommendation Model Utilizing Music and User Metadata

2019 ◽  
Vol 9 (4) ◽  
pp. 703 ◽  
Author(s):  
Hai-Tao Zheng ◽  
Jin-Yuan Chen ◽  
Nan Liang ◽  
Arun Sangaiah ◽  
Yong Jiang ◽  
...  

Deep learning shows its superiority in many domains such as computing vision, nature language processing, and speech recognition. In music recommendation, most deep learning-based methods focus on learning users’ temporal preferences using their listening histories. The cold start problem is not addressed, however, and the music characteristics are not fully exploited by these methods. In addition, the music characteristics and the users’ temporal preferences are not combined naturally, which cause the relatively low performance of music recommendation. To address these issues, we proposed a Deep Temporal Neural Music Recommendation model (DTNMR) based on music characteristics and the users’ temporal preferences. We encoded the music metadata into one-hot vectors and utilized the Deep Neural Network to project the music vectors to low-dimensional space and obtain the music characteristics. In addition, Long Short-Term Memory (LSTM) neural networks are utilized to learn about users’ long-term and short-term preferences from their listening histories. DTNMR alleviates the cold start problem in the item side using the music medadata and discovers new users’ preferences immediately after they listen to music. The experimental results show DTNMR outperforms seven baseline methods in terms of recall, precision, f-measure, MAP, user coverage and AUC.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Kazi Nabiul Alam ◽  
Md Shakib Khan ◽  
Abdur Rab Dhruba ◽  
Mohammad Monirujjaman Khan ◽  
Jehad F. Al-Amri ◽  
...  

The COVID-19 pandemic has had a devastating effect on many people, creating severe anxiety, fear, and complicated feelings or emotions. After the initiation of vaccinations against coronavirus, people’s feelings have become more diverse and complex. Our aim is to understand and unravel their sentiments in this research using deep learning techniques. Social media is currently the best way to express feelings and emotions, and with the help of Twitter, one can have a better idea of what is trending and going on in people’s minds. Our motivation for this research was to understand the diverse sentiments of people regarding the vaccination process. In this research, the timeline of the collected tweets was from December 21 to July21. The tweets contained information about the most common vaccines available recently from across the world. The sentiments of people regarding vaccines of all sorts were assessed using the natural language processing (NLP) tool, Valence Aware Dictionary for sEntiment Reasoner (VADER). Initializing the polarities of the obtained sentiments into three groups (positive, negative, and neutral) helped us visualize the overall scenario; our findings included 33.96% positive, 17.55% negative, and 48.49% neutral responses. In addition, we included our analysis of the timeline of the tweets in this research, as sentiments fluctuated over time. A recurrent neural network- (RNN-) oriented architecture, including long short-term memory (LSTM) and bidirectional LSTM (Bi-LSTM), was used to assess the performance of the predictive models, with LSTM achieving an accuracy of 90.59% and Bi-LSTM achieving 90.83%. Other performance metrics such as precision,, F1-score, and a confusion matrix were also used to validate our models and findings more effectively. This study improves understanding of the public’s opinion on COVID-19 vaccines and supports the aim of eradicating coronavirus from the world.


2018 ◽  
Vol 10 (11) ◽  
pp. 113 ◽  
Author(s):  
Yue Li ◽  
Xutao Wang ◽  
Pengjian Xu

Text classification is of importance in natural language processing, as the massive text information containing huge amounts of value needs to be classified into different categories for further use. In order to better classify text, our paper tries to build a deep learning model which achieves better classification results in Chinese text than those of other researchers’ models. After comparing different methods, long short-term memory (LSTM) and convolutional neural network (CNN) methods were selected as deep learning methods to classify Chinese text. LSTM is a special kind of recurrent neural network (RNN), which is capable of processing serialized information through its recurrent structure. By contrast, CNN has shown its ability to extract features from visual imagery. Therefore, two layers of LSTM and one layer of CNN were integrated to our new model: the BLSTM-C model (BLSTM stands for bi-directional long short-term memory while C stands for CNN.) LSTM was responsible for obtaining a sequence output based on past and future contexts, which was then input to the convolutional layer for extracting features. In our experiments, the proposed BLSTM-C model was evaluated in several ways. In the results, the model exhibited remarkable performance in text classification, especially in Chinese texts.


Author(s):  
Satish Tirumalapudi

Abstract: Chat bots are software applications that help users to communicate with the machine and get the required result, this is where Natural Language Processing (NLP) comes into the picture. Natural language processing is based on deep learning that enables computers to acquire meaning from inputs given by the users. Natural language processing techniques can make possible the use of natural language to express ideas, thus drastically increasing accessibility. NLP engines rely on the elements of intent, utterance, entity, context, and session. Here in this project, we will be using Deep learning techniques which will be trained on the dataset which contains categories, patterns, and responses. Long Short-Term Memory (LSTM) is a Recurrent Neural Network that is capable of learning order dependence in sequence prediction problems. One of the most popular RNN approaches is LSTM to identify and control a dynamic system. We use an RNN to classify the category user’s message belongs to and then will give a response from the list of responses. Keywords: NLP – Natural Language Processing, LSTM – Long Short Term Memory, RNN – Recurrent Neural Networks.


Author(s):  
Yudi Widhiyasana ◽  
Transmissia Semiawan ◽  
Ilham Gibran Achmad Mudzakir ◽  
Muhammad Randi Noor

Klasifikasi teks saat ini telah menjadi sebuah bidang yang banyak diteliti, khususnya terkait Natural Language Processing (NLP). Terdapat banyak metode yang dapat dimanfaatkan untuk melakukan klasifikasi teks, salah satunya adalah metode deep learning. RNN, CNN, dan LSTM merupakan beberapa metode deep learning yang umum digunakan untuk mengklasifikasikan teks. Makalah ini bertujuan menganalisis penerapan kombinasi dua buah metode deep learning, yaitu CNN dan LSTM (C-LSTM). Kombinasi kedua metode tersebut dimanfaatkan untuk melakukan klasifikasi teks berita bahasa Indonesia. Data yang digunakan adalah teks berita bahasa Indonesia yang dikumpulkan dari portal-portal berita berbahasa Indonesia. Data yang dikumpulkan dikelompokkan menjadi tiga kategori berita berdasarkan lingkupnya, yaitu “Nasional”, “Internasional”, dan “Regional”. Dalam makalah ini dilakukan eksperimen pada tiga buah variabel penelitian, yaitu jumlah dokumen, ukuran batch, dan nilai learning rate dari C-LSTM yang dibangun. Hasil eksperimen menunjukkan bahwa nilai F1-score yang diperoleh dari hasil klasifikasi menggunakan metode C-LSTM adalah sebesar 93,27%. Nilai F1-score yang dihasilkan oleh metode C-LSTM lebih besar dibandingkan dengan CNN, dengan nilai 89,85%, dan LSTM, dengan nilai 90,87%. Dengan demikian, dapat disimpulkan bahwa kombinasi dua metode deep learning, yaitu CNN dan LSTM (C-LSTM),memiliki kinerja yang lebih baik dibandingkan dengan CNN dan LSTM.


Information ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 312 ◽  
Author(s):  
Asma Baccouche ◽  
Sadaf Ahmed ◽  
Daniel Sierra-Sosa ◽  
Adel Elmaghraby

Identifying internet spam has been a challenging problem for decades. Several solutions have succeeded to detect spam comments in social media or fraudulent emails. However, an adequate strategy for filtering messages is difficult to achieve, as these messages resemble real communications. From the Natural Language Processing (NLP) perspective, Deep Learning models are a good alternative for classifying text after being preprocessed. In particular, Long Short-Term Memory (LSTM) networks are one of the models that perform well for the binary and multi-label text classification problems. In this paper, an approach merging two different data sources, one intended for Spam in social media posts and the other for Fraud classification in emails, is presented. We designed a multi-label LSTM model and trained it on the joint datasets including text with common bigrams, extracted from each independent dataset. The experiment results show that our proposed model is capable of identifying malicious text regardless of the source. The LSTM model trained with the merged dataset outperforms the models trained independently on each dataset.


2020 ◽  
Vol 17 (6) ◽  
pp. 935-946
Author(s):  
Jihene Younes ◽  
Hadhemi Achour ◽  
Emna Souissi ◽  
Ahmed Ferchichi

Language identification is an important task in natural language processing that consists in determining the language of a given text. It has increasingly picked the interest of researchers for the past few years, especially for code-switching informal textual content. In this paper, we focus on the identification of the Romanized user-generated Tunisian dialect on the social web. We segment and annotate a corpus extracted from social media and propose a deep learning approach for the identification task. We use a Bidirectional Long Short-Term Memory neural network with Conditional Random Fields decoding (BLSTM-CRF). For word embeddings, we combine word-character BLSTM vector representation and Fast Text embeddings that takes into consideration character n-gram features. The overall accuracy obtained is 98.65%.


Author(s):  
Huu Nguyen Phat ◽  
Nguyen Thi Minh Anh

In the context of the ongoing forth industrial revolution and fast computer science development the amount of textual information becomes huge. So, prior to applying the seemingly appropriate methodologies and techniques to the above data processing their nature and characteristics should be thoroughly analyzed and understood. At that, automatic text processing incorporated in the existing systems may facilitate many procedures. So far, text classification is one of the basic applications to natural language processing accounting for such factors as emotions’ analysis, subject labeling etc. In particular, the existing advancements in deep learning networks demonstrate that the proposed methods may fit the documents’ classifying, since they possess certain extra efficiency; for instance, they appeared to be effective for classifying texts in English. The thorough study revealed that practically no research effort was put into an expertise of the documents in Vietnamese language. In the scope of our study, there is not much research for documents in Vietnamese. The development of deep learning models for document classification has demonstrated certain improvements for texts in Vietnamese. Therefore, the use of long short term memory network with Word2vec is proposed to classify text that improves both performance and accuracy. The here developed approach when compared with other traditional methods demonstrated somewhat better results at classifying texts in Vietnamese language. The evaluation made over datasets in Vietnamese shows an accuracy of over 90%; also the proposed approach looks quite promising for real applications.


Author(s):  
Ali Saeed ◽  
Rao Muhammad Adeel Nawab ◽  
Mark Stevenson

Word Sense Disambiguation (WSD), the process of automatically identifying the correct meaning of a word used in a given context, is a significant challenge in Natural Language Processing. A range of approaches to the problem has been explored by the research community. The majority of these efforts has focused on a relatively small set of languages, particularly English. Research on WSD for South Asian languages, particularly Urdu, is still in its infancy. In recent years, deep learning methods have proved to be extremely successful for a range of Natural Language Processing tasks. The main aim of this study is to apply, evaluate, and compare a range of deep learning methods approaches to Urdu WSD (both Lexical Sample and All-Words) including Simple Recurrent Neural Networks, Long-Short Term Memory, Gated Recurrent Units, Bidirectional Long-Short Term Memory, and Ensemble Learning. The evaluation was carried out on two benchmark corpora: (1) the ULS-WSD-18 corpus and (2) the UAW-WSD-18 corpus. Results (Accuracy = 63.25% and F1-Measure = 0.49) show that a deep learning approach outperforms previously reported results for the Urdu All-Words WSD task, whereas performance using deep learning approaches (Accuracy = 72.63% and F1-Measure = 0.60) are low in comparison to previously reported for the Urdu Lexical Sample task.


2019 ◽  
Vol 26 (12) ◽  
pp. 1584-1591 ◽  
Author(s):  
Xue Shi ◽  
Yingping Yi ◽  
Ying Xiong ◽  
Buzhou Tang ◽  
Qingcai Chen ◽  
...  

Abstract Objective Extracting clinical entities and their attributes is a fundamental task of natural language processing (NLP) in the medical domain. This task is typically recognized as 2 sequential subtasks in a pipeline, clinical entity or attribute recognition followed by entity-attribute relation extraction. One problem of pipeline methods is that errors from entity recognition are unavoidably passed to relation extraction. We propose a novel joint deep learning method to recognize clinical entities or attributes and extract entity-attribute relations simultaneously. Materials and Methods The proposed method integrates 2 state-of-the-art methods for named entity recognition and relation extraction, namely bidirectional long short-term memory with conditional random field and bidirectional long short-term memory, into a unified framework. In this method, relation constraints between clinical entities and attributes and weights of the 2 subtasks are also considered simultaneously. We compare the method with other related methods (ie, pipeline methods and other joint deep learning methods) on an existing English corpus from SemEval-2015 and a newly developed Chinese corpus. Results Our proposed method achieves the best F1 of 74.46% on entity recognition and the best F1 of 50.21% on relation extraction on the English corpus, and 89.32% and 88.13% on the Chinese corpora, respectively, which outperform the other methods on both tasks. Conclusions The joint deep learning–based method could improve both entity recognition and relation extraction from clinical text in both English and Chinese, indicating that the approach is promising.


Sign in / Sign up

Export Citation Format

Share Document