scholarly journals Fabrication of ZrO2(MgO)/CaAl2O4+CaAl4O7 Bilayer Structure Used for Sulfur Sensor by Laser Cladding

2019 ◽  
Vol 9 (6) ◽  
pp. 1036
Author(s):  
Tianpeng Wen ◽  
Jingkun Yu ◽  
Endong Jin ◽  
Lei Yuan ◽  
Yuting Zhou ◽  
...  

The ZrO2(MgO)/CaAl2O4+CaAl4O7 bilayer structure used for sulfur sensor was fabricated by the laser powder cladding (LPC) method using the MgO partially stabilized zirconia (2.7 wt% MgO-PSZ) as the substrate and the CaAl2O4 + CaAl4O7 composites as the coating material. The microstructure, phase composition and ionic conductivity of this bilayer structure were investigated for better application in the sulfur determination. The results indicated that the structure of the coating was dense and well-distributed with a thickness of 100 μm. The ionic conductivity of the ZrO2(MgO)/CaAl2O4+CaAl4O7 bilayer structure was up to 2.06 × 10−3 S·cm−1 at 850 °C that met the required ionic conductivity of ionic conductor for solid electrolyte sulfur sensor. Furthermore, the sulfur sensor Mo|Cr+Cr2O3| ZrO2(MgO)| CaAl2O4+CaAl4O7|[S]Fe| Mo was assembled used this bilayer structure and tested in carbon-saturated liquid iron at 1773 K and 1823 K. The stability and reproducibility of the sulfur sensor were satisfactory and could be used for sulfur determination in the liquid iron.

2020 ◽  
Vol 62 (12) ◽  
pp. 2093
Author(s):  
Д.А. Агарков ◽  
М.А. Борик ◽  
Г.М. Кораблева ◽  
А.В. Кулебякин ◽  
И.Е. Курицына ◽  
...  

The effect of heat treatment at 1000° C for 400 hours on the thermal conductivity of crystals stabilized with scandium oxide, (ZrO2)1-x(Sc2O3)x (x = 0.08–0.10), and together with scandium and yttrium oxides, (ZrO2)1-x-y(Sc2O3)x(Y2O3)y (x = 0.003−0.20; y = 0.02−0.025). For crystals of zirconium dioxide stabilized with scandium oxide, the most noticeable changes in thermal conductivity concern 9ScSZ crystals, in which changes in the phase composition occur, and a noticeable amount of rhombohedral phase appears. For 8ScSZ crystals, these changes are less noticeable and are mainly caused by the ordering of oxygen vacancies and changes in the microstructure of the samples, while for 10ScSZ crystals they are practically absent. The 10ScSZ crystals have the minimum electrical conductivity, both before and after annealing, which is determined by the highest content of scandium oxide in the solid solution. Small changes in thermal conductivity concern crystals of partially stabilized zirconia codoped with scandium and yttrium oxides. For cubic crystals 8Sc2YSZ and 10Sc2YSZ, there are practically no changes in the value of thermal conductivity, the nature of the temperature dependence of thermal conductivity, and the phase composition of crystals. The introduction of yttrium oxide into solid solutions based on zirconium dioxide along with scandium oxide makes it possible to increase the stability of its phase composition and structurally dependent thermal and electrophysical characteristics.


2020 ◽  
Vol 38 (4A) ◽  
pp. 491-500
Author(s):  
Abeer F. Al-Attar ◽  
Saad B. H. Farid ◽  
Fadhil A. Hashim

In this work, Yttria (Y2O3) was successfully doped into tetragonal 3mol% yttria stabilized Zirconia (3YSZ) by high energy-mechanical milling to synthesize 8mol% yttria stabilized Zirconia (8YSZ) used as an electrolyte for high temperature solid oxide fuel cells (HT-SOFC). This work aims to evaluate the densification and ionic conductivity of the sintered electrolytes at 1650°C. The bulk density was measured according to ASTM C373-17. The powder morphology and the microstructure of the sintered electrolytes were analyzed via Field Emission Scanning Electron Microscopy (FESEM). The chemical analysis was obtained with Energy-dispersive X-ray spectroscopy (EDS). Also, X-ray diffraction (XRD) was used to obtain structural information of the starting materials and the sintered electrolytes. The ionic conductivity was obtained through electrochemical impedance spectroscopy (EIS) in the air as a function of temperatures at a frequency range of 100(mHz)-100(kHz). It is found that the 3YSZ has a higher density than the 8YSZ. The impedance analysis showed that the ionic conductivity of the prepared 8YSZ at 800°C is0.906 (S.cm) and it was 0.214(S.cm) of the 3YSZ. Besides, 8YSZ has a lower activation energy 0.774(eV) than that of the 3YSZ 0.901(eV). Thus, the prepared 8YSZ can be nominated as an electrolyte for the HT-SOFC.


Nanoscale ◽  
2021 ◽  
Author(s):  
Feihu Tan ◽  
Hua An ◽  
Ning Li ◽  
Jun Du ◽  
Zhengchun Peng

As flexible all-solid-state batteries are highly safe and lightweight, they can be considered as candidates for wearable energy sources. However, their performance needs to be first improved, which can be...


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 989
Author(s):  
Feihu Tan ◽  
Hua An ◽  
Ning Li ◽  
Jun Du ◽  
Zhengchun Peng

All-solid-state batteries (ASSBs) are attractive for energy storage, mainly because introducing solid-state electrolytes significantly improves the battery performance in terms of safety, energy density, process compatibility, etc., compared with liquid electrolytes. However, the ionic conductivity of the solid-state electrolyte and the interface between the electrolyte and the electrode are two key factors that limit the performance of ASSBs. In this work, we investigated the structure of a Li0.33La0.55TiO3 (LLTO) thin-film solid electrolyte and the influence of different interfaces between LLTO electrolytes and electrodes on battery performance. The maximum ionic conductivity of the LLTO was 7.78 × 10−5 S/cm. Introducing a buffer layer could drastically improve the battery charging and discharging performance and cycle stability. Amorphous SiO2 allowed good physical contact with the electrode and the electrolyte, reduced the interface resistance, and improved the rate characteristics of the battery. The battery with the optimized interface could achieve 30C current output, and its capacity was 27.7% of the initial state after 1000 cycles. We achieved excellent performance and high stability by applying the dense amorphous SiO2 buffer layer, which indicates a promising strategy for the development of ASSBs.


Author(s):  
Kentaro Yamamoto ◽  
Seunghoon Yang ◽  
Masakuni Takahashi ◽  
Koji Ohara ◽  
Tomoki Uchiyama ◽  
...  

Author(s):  
Diego Holanda Pereira de Souza ◽  
Kasper T. Møller ◽  
Stephen A. Moggach ◽  
Terry D Humphries ◽  
Anita D’Angelo ◽  
...  

Metal boron-hydrogen compounds are considered as promising solid electrolyte candidates for the development of all-solid-state batteries (ASSB), owing to the high ionic conductivity exhibited by closo- and nido-boranes. In this...


2005 ◽  
Vol 19 (28n29) ◽  
pp. 1547-1550
Author(s):  
YOULIANG CHENG ◽  
XIN LI ◽  
ZHONGYAO FAN ◽  
BOFEN YING

Representing surface tension by nonlinear relationship on temperature, the boundary value problem of linear stability differential equation on small perturbation is derived. Under the condition of the isothermal wall the effects of nonlinear surface tension on stability of heat transfer in saturated liquid film of different liquid low boiling point gases are investigated as wall temperature is varied.


2021 ◽  
Vol 60 (12) ◽  
pp. 4630-4638
Author(s):  
Changxiang Guo ◽  
Dong Liu ◽  
Jinjia Wei ◽  
Fei Chen

Sign in / Sign up

Export Citation Format

Share Document