scholarly journals A Fault-Signal-Based Generalizing Remaining Useful Life Prognostics Method for Wheel Hub Bearings

2019 ◽  
Vol 9 (6) ◽  
pp. 1080 ◽  
Author(s):  
Shixi Tang ◽  
Jinan Gu ◽  
Keming Tang ◽  
Rong Zou ◽  
Xiaohong Sun ◽  
...  

The goal of this work is to improve the generalization of remaining useful life (RUL) prognostics for wheel hub bearings. The traditional life prognostics methods assume that the data used in RUL prognostics is composed of one specific fatigue damage type, the data used in RUL prognostics is accurate, and the RUL prognostics are conducted in the short term. Due to which, a generalizing RUL prognostics method is designed based on fault signal data. Firstly, the fault signal model is designed with the signal in a complex and mutative environment. Then, the generalizing RUL prognostics method is designed based on the fault signal model. Lastly, the simplified solution of the generalizing RUL prognostics method is deduced. The experimental results show that the proposed method gained good accuracies for RUL prognostics for all the amplitude, energy, and kurtosis features with fatigue damage types. The proposed method can process inaccurate fault signals with different kinds of noise in the actual working environment, and it can be conducted in the long term. Therefore, the RUL prognostics method has a good generalization.

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 285
Author(s):  
Kwok Tai Chui ◽  
Brij B. Gupta ◽  
Pandian Vasant

Understanding the remaining useful life (RUL) of equipment is crucial for optimal predictive maintenance (PdM). This addresses the issues of equipment downtime and unnecessary maintenance checks in run-to-failure maintenance and preventive maintenance. Both feature extraction and prediction algorithm have played crucial roles on the performance of RUL prediction models. A benchmark dataset, namely Turbofan Engine Degradation Simulation Dataset, was selected for performance analysis and evaluation. The proposal of the combination of complete ensemble empirical mode decomposition and wavelet packet transform for feature extraction could reduce the average root-mean-square error (RMSE) by 5.14–27.15% compared with six approaches. When it comes to the prediction algorithm, the results of the RUL prediction model could be that the equipment needs to be repaired or replaced within a shorter or a longer period of time. Incorporating this characteristic could enhance the performance of the RUL prediction model. In this paper, we have proposed the RUL prediction algorithm in combination with recurrent neural network (RNN) and long short-term memory (LSTM). The former takes the advantages of short-term prediction whereas the latter manages better in long-term prediction. The weights to combine RNN and LSTM were designed by non-dominated sorting genetic algorithm II (NSGA-II). It achieved average RMSE of 17.2. It improved the RMSE by 6.07–14.72% compared with baseline models, stand-alone RNN, and stand-alone LSTM. Compared with existing works, the RMSE improvement by proposed work is 12.95–39.32%.


2019 ◽  
Vol 9 (22) ◽  
pp. 4813 ◽  
Author(s):  
Hanbo Yang ◽  
Fei Zhao ◽  
Gedong Jiang ◽  
Zheng Sun ◽  
Xuesong Mei

Remaining useful life (RUL) prediction is a challenging research task in prognostics and receives extensive attention from academia to industry. This paper proposes a novel deep convolutional neural network (CNN) for RUL prediction. Unlike health indicator-based methods which require the long-term tracking of sensor data from the initial stage, the proposed network aims to utilize data from consecutive time samples at any time interval for RUL prediction. Additionally, a new kernel module for prognostics is designed where the kernels are selected automatically, which can further enhance the feature extraction ability of the network. The effectiveness of the proposed network is validated using the C-MAPSS dataset for aircraft engines provided by NASA. Compared with the state-of-the-art results on the same dataset, the prediction results demonstrate the superiority of the proposed network.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 165419-165431
Author(s):  
Benvolence Chinomona ◽  
Chunhui Chung ◽  
Lien-Kai Chang ◽  
Wei-Chih Su ◽  
Mi-Ching Tsai

Author(s):  
Ning He ◽  
Cheng Qian ◽  
Lile He

Abstract As an important energy storage device, lithium-ion batteries have vast applications in daily production and life. Therefore, the remaining useful life prediction of such batteries is of great significance, which can maintain the efficacy and reliability of the system powered by lithium-ion batteries. For predicting remaining useful life of lithium-ion batteries accurately, an adaptive hybrid battery model and an improved particle filter are developed. Firstly, the adaptive hybrid model is constructed, which is a combination of empirical model and long-short term memory neural network model such that it could characterize battery capacity degradation trend more effectively. In addition, the adaptive adjustment of the parameters for hybrid model is realized via optimization technique. Then, the beetle antennae search based particle filter is applied to update the battery states offline constructed by the proposed adaptive hybrid model, which can improve the estimation accuracy. Finally, remaining useful life short-term prediction is realized online based on long short-term memory neural network rolling prediction combined historical capacity with online measurements and latest offline states and model parameters. The battery data set published by NASA is used to verify the effectiveness of proposed strategy. The experimental results indicate that the proposed adaptive hybrid model can well represent the battery degradation characteristics, and have a higher accuracy compared with other models. The short-term remaining useful life prediction results have good performance with the errors of 1 cycle, 3 cycles, and 1 cycle, above results indicate proposed scheme has a good performance on short-term remaining useful life prediction.


2021 ◽  
Author(s):  
Pradeep Lall ◽  
Tony Thomas ◽  
Ken Blecker

Abstract Prognostics and Remaining Useful Life (RUL) estimations of complex systems are essential to operational safety, increased efficiency, and help to schedule maintenance proactively. Modeling the remaining useful life of a system with many complexities is possible with the rapid development in the field of deep learning as a computational technique for failure prediction. Deep learning can adapt to multivariate parameters complex and nonlinear behavior, which is difficult using traditional time-series models for forecasting and prediction purposes. In this paper, a deep learning approach based on Long Short-Term Memory (LSTM) network is used to predict the remaining useful life of the PCB at different conditions of temperature and vibration. This technique can identify the different underlying patterns in the time series that can predict the RUL. This study involves feature vector identification and RUL estimations for SAC305, SAC105, and Tin Lead solder PCBs under different vibration levels and temperature conditions. The acceleration levels of vibration are fixed at 5g and 10g, while the temperature levels are 55°C and 100°C. The test board is a multilayer FR4 configuration with JEDEC standard dimensions consists of twelve packages arranged in a rectangular pattern. Strain signals are acquired from the backside of the PCB at symmetric locations to identify the failure of all the packages during vibration. The strain signals are resistance values that are acquired simultaneously during the experiment until the failure of most of the packages on the board. The feature vectors are identified from statistical analysis on the strain signals frequency and instantaneous frequency components. The principal component analysis is used as a data reduction technique to identify the different patterns produced from the four strain signals with failures of the packages during vibration. LSTM deep learning method is used to model the RUL of the packages at different individual operating conditions of vibration for all three solder materials involved in this study. A combined model for RUL prediction for a material that can take care of the changes in the operating conditions is also modeled for each material.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881718 ◽  
Author(s):  
Wentao Mao ◽  
Jianliang He ◽  
Jiamei Tang ◽  
Yuan Li

For bearing remaining useful life prediction problem, the traditional machine-learning-based methods are generally short of feature representation ability and incapable of adaptive feature extraction. Although deep-learning-based remaining useful life prediction methods proposed in recent years can effectively extract discriminative features for bearing fault, these methods tend to less consider temporal information of fault degradation process. To solve this problem, a new remaining useful life prediction approach based on deep feature representation and long short-term memory neural network is proposed in this article. First, a new criterion, named support vector data normalized correlation coefficient, is proposed to automatically divide the whole bearing life as normal state and fast degradation state. Second, deep features of bearing fault with good representation ability can be obtained from convolutional neural network by means of the marginal spectrum in Hilbert–Huang transform of raw vibration signals and health state label. Finally, by considering the temporal information of degradation process, these features are fed into a long short-term memory neural network to construct a remaining useful life prediction model. Experiments are conducted on bearing data sets of IEEE PHM Challenge 2012. The results show the significance of performance improvement of the proposed method in terms of predictive accuracy and numerical stability.


2019 ◽  
Vol 10 (1) ◽  
pp. 69 ◽  
Author(s):  
Peyman Sheikholharam Mashhadi ◽  
Sławomir Nowaczyk ◽  
Sepideh Pashami

Predictive Maintenance (PM) is a proactive maintenance strategy that tries to minimize a system’s downtime by predicting failures before they happen. It uses data from sensors to measure the component’s state of health and make forecasts about its future degradation. However, existing PM methods typically focus on individual measurements. While it is natural to assume that a history of measurements carries more information than a single one. This paper aims at incorporating such information into PM models. In practice, especially in the automotive domain, diagnostic models have low performance, due to a large amount of noise in the data and limited sensing capability. To address this issue, this paper proposes to use a specific type of ensemble learning known as Stacked Ensemble. The idea is to aggregate predictions of multiple models—consisting of Long Short-Term Memory (LSTM) and Convolutional-LSTM—via a meta model, in order to boost performance. Stacked Ensemble model performs well when its base models are as diverse as possible. To this end, each such model is trained using a specific combination of the following three aspects: feature subsets, past dependency horizon, and model architectures. Experimental results demonstrate benefits of the proposed approach on a case study of heavy-duty truck turbochargers.


Sign in / Sign up

Export Citation Format

Share Document