scholarly journals A Novel Deep Learning Approach for Machinery Prognostics Based on Time Windows

2019 ◽  
Vol 9 (22) ◽  
pp. 4813 ◽  
Author(s):  
Hanbo Yang ◽  
Fei Zhao ◽  
Gedong Jiang ◽  
Zheng Sun ◽  
Xuesong Mei

Remaining useful life (RUL) prediction is a challenging research task in prognostics and receives extensive attention from academia to industry. This paper proposes a novel deep convolutional neural network (CNN) for RUL prediction. Unlike health indicator-based methods which require the long-term tracking of sensor data from the initial stage, the proposed network aims to utilize data from consecutive time samples at any time interval for RUL prediction. Additionally, a new kernel module for prognostics is designed where the kernels are selected automatically, which can further enhance the feature extraction ability of the network. The effectiveness of the proposed network is validated using the C-MAPSS dataset for aircraft engines provided by NASA. Compared with the state-of-the-art results on the same dataset, the prediction results demonstrate the superiority of the proposed network.

AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 48-70
Author(s):  
Wei Ming Tan ◽  
T. Hui Teo

Prognostic techniques attempt to predict the Remaining Useful Life (RUL) of a subsystem or a component. Such techniques often use sensor data which are periodically measured and recorded into a time series data set. Such multivariate data sets form complex and non-linear inter-dependencies through recorded time steps and between sensors. Many current existing algorithms for prognostic purposes starts to explore Deep Neural Network (DNN) and its effectiveness in the field. Although Deep Learning (DL) techniques outperform the traditional prognostic algorithms, the networks are generally complex to deploy or train. This paper proposes a Multi-variable Time Series (MTS) focused approach to prognostics that implements a lightweight Convolutional Neural Network (CNN) with attention mechanism. The convolution filters work to extract the abstract temporal patterns from the multiple time series, while the attention mechanisms review the information across the time axis and select the relevant information. The results suggest that the proposed method not only produces a superior accuracy of RUL estimation but it also trains many folds faster than the reported works. The superiority of deploying the network is also demonstrated on a lightweight hardware platform by not just being much compact, but also more efficient for the resource restricted environment.


Author(s):  
Naipeng Li ◽  
Yaguo Lei ◽  
Nagi Gebraeel ◽  
Zhijian Wang ◽  
Xiao Cai ◽  
...  

2020 ◽  
Author(s):  
Ji Hoon Lee ◽  
Seung Min Oh ◽  
Yeong Gwang Kim ◽  
Dong Su Lee ◽  
Akm Ashiquzzaman ◽  
...  

Author(s):  
Zhibin Lin ◽  
Hongli Gao ◽  
Erqing Zhang ◽  
Weiqing Cao ◽  
Kesi Li

Reliable remaining useful life (RUL) prediction of industrial equipment key components is of considerable importance in condition-based maintenance to avoid catastrophic failure, promote reliability and reduce cost during the production. Diamond-coated mechanical seal is one of the most critical wearing components in petroleum chemical, nuclear power and other process industries. Estimating the RUL is of critical importance. We consider the data-driven approaches for diamond-coated mechanical seal RUL estimation based on AE sensor data, since it is difficult to construct an explicit mathematical degradation model of seal. The challenges of this work are dealing with the noisy AE sensor data and modeling the degradation process with fluctuation. Faced with these challenges, we propose a pipeline method CDF-CNN to estimate the RUL for mechanical seal: WPD-KLD to raise the signal-to-noise ratio, novel CDF-based statistics to represent seal degradation process and CNN structure to estimate RUL. To acquire AE sensor data, several diamond-coated seals are tested from new to failure in three working conditions. Experimental results demonstrate that the proposed method can accurately predict the RUL of diamond-coated mechanical seal based on AE signals. The proposed prediction method can be generalized to other various mechanical assets.


2021 ◽  
Vol 208 ◽  
pp. 107249
Author(s):  
Naipeng Li ◽  
Nagi Gebraeel ◽  
Yaguo Lei ◽  
Xiaolei Fang ◽  
Xiao Cai ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1155
Author(s):  
Yi-Wei Lu ◽  
Chia-Yu Hsu ◽  
Kuang-Chieh Huang

With the development of smart manufacturing, in order to detect abnormal conditions of the equipment, a large number of sensors have been used to record the variables associated with production equipment. This study focuses on the prediction of Remaining Useful Life (RUL). RUL prediction is part of predictive maintenance, which uses the development trend of the machine to predict when the machine will malfunction. High accuracy of RUL prediction not only reduces the consumption of manpower and materials, but also reduces the need for future maintenance. This study focuses on detecting faults as early as possible, before the machine needs to be replaced or repaired, to ensure the reliability of the system. It is difficult to extract meaningful features from sensor data directly. This study proposes a model based on an Autoencoder Gated Recurrent Unit (AE-GRU), in which the Autoencoder (AE) extracts the important features from the raw data and the Gated Recurrent Unit (GRU) selects the information from the sequences to forecast RUL. To evaluate the performance of the proposed AE-GRU model, an aircraft turbofan engine degradation simulation dataset provided by NASA was used and a comparison made of different recurrent neural networks. The results demonstrate that the AE-GRU is better than other recurrent neural networks, such as Long Short-Term Memory (LSTM) and GRU.


2019 ◽  
Vol 9 (6) ◽  
pp. 1080 ◽  
Author(s):  
Shixi Tang ◽  
Jinan Gu ◽  
Keming Tang ◽  
Rong Zou ◽  
Xiaohong Sun ◽  
...  

The goal of this work is to improve the generalization of remaining useful life (RUL) prognostics for wheel hub bearings. The traditional life prognostics methods assume that the data used in RUL prognostics is composed of one specific fatigue damage type, the data used in RUL prognostics is accurate, and the RUL prognostics are conducted in the short term. Due to which, a generalizing RUL prognostics method is designed based on fault signal data. Firstly, the fault signal model is designed with the signal in a complex and mutative environment. Then, the generalizing RUL prognostics method is designed based on the fault signal model. Lastly, the simplified solution of the generalizing RUL prognostics method is deduced. The experimental results show that the proposed method gained good accuracies for RUL prognostics for all the amplitude, energy, and kurtosis features with fatigue damage types. The proposed method can process inaccurate fault signals with different kinds of noise in the actual working environment, and it can be conducted in the long term. Therefore, the RUL prognostics method has a good generalization.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Mahbubul Alam ◽  
Laleh Jalali ◽  
Mahbubul Alam ◽  
Ahmed Farahat ◽  
Chetan Gupta

Abstract—Prognostics aims to predict the degradation of equipment by estimating their remaining useful life (RUL) and/or the failure probability within a specific time horizon. The high demand of equipment prognostics in the industry have propelled researchers to develop robust and efficient prognostics techniques. Among data driven techniques for prognostics, machine learning and deep learning (DL) based techniques, particularly Recurrent Neural Networks (RNNs) have gained significant attention due to their ability of effectively representing the degradation progress by employing dynamic temporal behaviors. RNNs are well known for handling sequential data, especially continuous time series sequential data where the data follows certain pattern. Such data is usually obtained from sensors attached to the equipment. However, in many scenarios sensor data is not readily available and often very tedious to acquire. Conversely, event data is more common and can easily be obtained from the error logs saved by the equipment and transmitted to a backend for further processing. Nevertheless, performing prognostics using event data is substantially more difficult than that of the sensor data due to the unique nature of event data. Though event data is sequential, it differs from other seminal sequential data such as time series and natural language in the following manner, i) unlike time series data, events may appear at any time, i.e., the appearance of events lacks periodicity; ii) unlike natural languages, event data do not follow any specific linguistic rule. Additionally, there may be a significant variability in the event types appearing within the same sequence.  Therefore, this paper proposes an RUL estimation framework to effectively handle the intricate and novel event data. The proposed framework takes discrete events generated by an equipment (e.g., type, time, etc.) as input, and generates for each new event an estimate of the remaining operating cycles in the life of a given component. To evaluate the efficacy of our proposed method, we conduct extensive experiments using benchmark datasets such as the CMAPSS data after converting the time-series data in these datasets to sequential event data. The event data conversion is carried out by careful exploration and application of appropriate transformation techniques to the time series. To the best of our knowledge this is the first time such event-based RUL estimation problem is introduced to the community. Furthermore, we propose several deep learning and machine learning based solution for the event-based RUL estimation problem. Our results suggest that the deep learning models, 1D-CNN, LSTM, and multi-head attention show similar RMSE, MAE and Score performance. Foreseeably, the XGBoost model achieve lower performance compared to the deep learning models since the XGBoost model fails to capture ordering information from the sequence of events. 


Author(s):  
Andrés Ruiz-Tagle Palazuelos ◽  
Enrique López Droguett ◽  
Rodrigo Pascual

With the availability of cheaper multi-sensor systems, one has access to massive and multi-dimensional sensor data for fault diagnostics and prognostics. However, from a time, engineering and computational perspective, it is often cost prohibitive to manually extract useful features and to label all the data. To address these challenges, deep learning techniques have been used in the recent years. Within these, convolutional neural networks have shown remarkable performance in fault diagnostics and prognostics. However, this model present limitations from a prognostics and health management perspective: to improve its feature extraction generalization capabilities and reduce computation time, ill-based pooling operations are employed, which require sub-sampling of the data, thus loosing potentially valuable information regarding an asset’s degradation process. Capsule neural networks have been recently proposed to address these problems with strong results in computer vision–related classification tasks. This has motivated us to extend capsule neural networks for fault prognostics and, in particular, remaining useful life estimation. The proposed model, architecture and algorithm are tested and compared to other state-of-the art deep learning models on the benchmark Commercial Modular Aero Propulsion System Simulation turbofans data set. The results indicate that the proposed capsule neural networks are a promising approach for remaining useful life prognostics from multi-dimensional sensor data.


Sign in / Sign up

Export Citation Format

Share Document