scholarly journals Fault Classification of Rotary Machinery Based on Smooth Local Subspace Projection Method and Permutation Entropy

2019 ◽  
Vol 9 (10) ◽  
pp. 2102 ◽  
Author(s):  
Lingjun Xiao ◽  
Yong Lv ◽  
Guozi Fu

Collected mechanical signals usually contain a number of noises, resulting in erroneous judgments of mechanical condition diagnosis. The mechanical signals, which are nonlinear or chaotic time series, have a high computational complexity and intrinsic broadband characteristic. This paper proposes a method of gear and bearing fault classification, based on the local subspace projection noise reduction and PE. A novel nonlinear projection noise reduction method, smooth orthogonal decomposition (SOD), is proposed to denoise the vibration signals of various operation conditions. SOD can decompose the reconstructed multiple strands to identify smooth local subspace. In the process of projection from a high dimension to a low dimension, a new weight matrix is put forward to achieve a better denoising effect. Afterwards, permutation entropy (PE) is applied in the detection of time sequence randomness and dynamic mutation behavior, which can effectively detect and amplify the variation of vibration signals. Hence PE can characterize the working conditions of gear and bearing under different conditions. The experimental results illustrate the effectiveness and superiority of the proposed approach. The theoretical derivations, numerical simulations and experimental studies, all confirm that the proposed approach based on the smooth local subspace projection method and PE, is promising in the field of the fault classification of rotary machinery.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yan Ren ◽  
Pan Liu ◽  
Leiming Hu ◽  
Ruoyu Qiao ◽  
Linlin Zhang ◽  
...  

Aiming at the problem that the vibration signals of the hydrogenerator unit are nonlinear and nonstationary and it is difficult to extract the signal features due to strong background noise and complex electromagnetic interference, this paper proposes a dual noise reduction method based on intrinsic time-scale decomposition (ITD) and permutation entropy (PE) combined with singular value decomposition (SVD). Firstly, the vibration signals are decomposed by ITD to obtain a series of PRC components, and the permutation entropy of each component is calculated. Secondly, according to the set permutation entropy threshold, the PRC components are selected for reconstruction to achieve a noise reduction effect. On this basis, SVD is carried out, and the appropriate reconstruction order is selected according to the position of the singular value difference spectrum mutation point for reconstruction, so as to achieve the secondary noise reduction effect. The proposed method is compared with the LMD-PE-SVD and EMD-PE-SVD dual noise reduction method by simulation, taking the correlation coefficient and signal-to-noise ratio to evaluate the noise reduction performance and finding that the ITD-PE-SVD noise reduction has good noise reduction and pulse effect. Furthermore, this method is applied to the analysis of the upper guide swing data in the X-direction and Y-direction of a unit in a hydropower station in China, and it is found that this method can effectively reduce noise and accurately extract signal features, thus determining the vibration cause, which is helpful to improve the turbine fault recognition rate.


2014 ◽  
Vol 7 (1) ◽  
pp. 78-83 ◽  
Author(s):  
Jiatang Cheng ◽  
Li Ai ◽  
Zhimei Duan ◽  
Yan Xiong

Aiming at the problem of the conventional vibration fault diagnosis technology with inconsistent result of a hydroelectric generating unit, an information fusion method was proposed based on the improved evidence theory. In this algorithm, the original evidence was amended by the credibility factor, and then the synthesis rule of standard evidence theory was utilized to carry out information fusion. The results show that the proposed method can obtain any definitive conclusion even if there is high conflict evidence in the synthesis evidence process, and may avoid the divergent phenomenon when the consistent evidence is fused, and is suitable for the fault classification of hydroelectric generating unit.


2014 ◽  
Vol 11 (10) ◽  
pp. 1817-1820 ◽  
Author(s):  
Azzedine Bouaraba ◽  
Aichouche Belhadj-Aissa ◽  
Dirk Borghys ◽  
Marc Acheroy ◽  
Damien Closson

Sign in / Sign up

Export Citation Format

Share Document