scholarly journals Study of Heat and Mass Transfer in Electroosmotic Flow of Third Order Fluid through Peristaltic Microchannels

2019 ◽  
Vol 9 (10) ◽  
pp. 2164 ◽  
Author(s):  
Sadia Waheed ◽  
Saima Noreen ◽  
Abid Hussanan

An analysis is carried out to evaluate the effects of heat and mass transfer in an electro-osmotic flow of third order fluid via peristaltic pumping. Solutions are derived for small wave number and Peclet number. The emerging non-linear mathematical model is solved analytically and compared numerically by the built-in scheme of working software. The table is inserted for shear stress distribution and a graph for comparison of solution techniques and accuracy of obtained results. The effects of various parameters of interest on pumping, trapping, temperature, heat transfer coefficient, and concentration distribution have been studied graphically. Electro-osmotic exchange of energy and mass has a role in reservoir engineering, chemical industry, and in micro-fabrication technologies.

2012 ◽  
Vol 12 (01) ◽  
pp. 1250001 ◽  
Author(s):  
T. HAYAT ◽  
S. HINA ◽  
AWATIF A. HENDI

Analysis has been carried out to examine the heat and mass transfer effects on the magnetohydrodynamics (MHD) peristaltic flow in a channel with compliant walls. An incompressible Maxwell fluid occupies the porous space. Modified Darcy's law and slip conditions are used in the problem formulation. Solutions for small wave number are derived. The effects of emerging parameters in the obtained solutions are displayed and discussed.


2015 ◽  
Vol 16 (2) ◽  
pp. 347-350
Author(s):  
S.G. Orlovska ◽  
A.O. Odnostalko ◽  
F.F. Karimova ◽  
M.S. Shkoropado

 The paper presents a study of high-temperature heat and mass transfer and combustion kinetics of octadecane particle in room temperature air taking in consideration fuel heating, melting and evaporation. The consecutive stages of droplet combustion are described. Burning rate constants and flame heights are determined for droplets with different initial diameters


2019 ◽  
Vol 8 (8) ◽  
pp. 1632-1639
Author(s):  
Aamir Ali ◽  
Y. Ali ◽  
D.N. Khan Marwat ◽  
M. Awais

Flow heat and mass transfer in a deformable channel of peristaltically moving walls is investigated in this paper. Moreover, the channel is filled with nanofluids. The purpose of this study is to examine the combined effects of surface deformation and peristaltic movement of the walls on the nanofluid flow in a channel. We have considered the effects of nanofluid in the peristaltically deformable porous channel whose walls are contracting or expanding in the normal direction. Nanofluids have been used to enhance the thermo-physical properties of fluids such as thermal diffusivity, thermal conductivity and convective heat transfer coefficients on flow and heat transfer. The analytic solution of the problem have been presented. We have analyzed the effects of different involved parameters such as Reynolds number, surface deformation parameter, Prandtl number, wave number, Brownian and thermophoretic diffusion parameters and Schmidt number on the velocity profile, the temperature profile, pressure distribution and the concentration profile with the help of graphs. The results are shown graphically and discussed physically. It is observed that the deformation increases the axial velocity and temperature of the fluid.


1972 ◽  
Vol 22 (5) ◽  
pp. 558-561
Author(s):  
L. L. Vasil'ev ◽  
L. P. Grakovich ◽  
S. V. Konev

Sign in / Sign up

Export Citation Format

Share Document