Heat and mass transfer in low-temperature heat exchanger pipes

1972 ◽  
Vol 22 (5) ◽  
pp. 558-561
Author(s):  
L. L. Vasil'ev ◽  
L. P. Grakovich ◽  
S. V. Konev
2020 ◽  
pp. 1420326X2094229
Author(s):  
Beungyong Park ◽  
Sihwan Lee

Desiccant-based hybrid air-conditioning technologies are currently being developed to reduce energy consumption and enhance the effectiveness of indoor thermal environmental control in buildings. The purpose of this study is to propose a compact desiccant-based outdoor air-conditioning system that directly uses heated desorption and cooled adsorption with comparatively low-temperature energy, and to propose a mathematical model for the system by investigating the heat and mass transfer characteristics of a zeolite-coated heat exchanger (ZCHE). To study the heat and mass transfer characteristics of the ZCHE, the moisture removal capacity and the moisture removal regeneration were measured at various heat source temperatures and water flow rates using an experimental model. The measured values were adopted as boundary condition for mathematical model. The results show that the air-conditioning performance of the ZCHE is strongly dependent on the water temperature under constant air conditions. The humidification capacity of the ZCHE was measured 25.0 g at 5 kW heat capacity and the humidification capacity was measured 10.2 g at 0.6 kW cooling capacity. The relative errors of mass transfer coefficient and heat transfer coefficient are ±3.6% and ±3.8%, respectively. Moreover, the proposed mathematical model fitted well with measured values.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Brian M. Fronk ◽  
Kyle R. Zada

Waste heat driven ammonia/water Kalina cycles have shown promise for improving the efficiency of electricity production from low-temperature reservoirs (T < 150 °C). However, there has been limited application of these systems to utilize widely available, disperse, waste heat streams for smaller scale power production (1–10 kWe). Factors limiting increased deployment of these systems include large, costly heat exchangers, and concerns over safety of the working fluid. The use of mini- and microchannel (D < 1 mm) heat exchangers has the potential to decrease system size and material cost, while also reducing the working fluid inventory, enabling penetration of Kalina cycles into these new markets. However, accurate methods of predicting the heat and mass transfer in microscale geometries must be available for designing and optimizing these compact heat exchangers. In the present study, the effect of different heat and mass transfer models on the calculated Kalina cycle condenser size is investigated at representative system conditions. A detailed heat exchanger model for a liquid-coupled microchannel ammonia/water condenser is developed. The heat exchanger is sized using different predictive methods to provide the required heat transfer area for a 1 kWe Kalina system with a source and sink temperature of 150 °C and 20 °C, respectively. The results show that for the models considered, predicted heat exchanger size can vary by up to 58%. Based on prior experimental results, a nonequilibrium approach is recommended to provide the most accurate, economically sized ammonia/water condenser.


Author(s):  
Yao Li ◽  
Haiqing Si ◽  
Jingxuan Qiu ◽  
Yingying Shen ◽  
Peihong Zhang ◽  
...  

Abstract The plate-fin heat exchanger has been widely applied in the field of air separation and aerospace due to its high specific surface area of heat transfer. However, the low heat transfer efficiency of its plate bundles has also attracted more attention. It is of great significance to optimize the structure of plate-fin heat exchanger to improve its heat transfer efficiency. The plate bundle was studied by combining numerical simulation with experiment. Firstly, according to the heat and mass transfer theory, the plate bundle calculation model of plate-fin heat exchanger was established, and the accuracy of the UDF (User-Defined Functions) for describing the mass and heat transfer was verified. Then, the influences of fin structure parameters on the heat and mass transfer characteristics of channel were discussed, including the height, spacing, thickness and length of fins. Finally the influence of various factors on the flow field performance under different flow states was integrated to complete the optimal design of the plate bundle.


2020 ◽  
Vol 24 (5 Part B) ◽  
pp. 3185-3193
Author(s):  
Sina Dang ◽  
Hongjun Xue ◽  
Xiaoyan Zhang ◽  
Chengwen Zhong

To strengthen the heat and mass transfer capacity and improve the temperature regulation rate, potential storage is taken as the research object in this research to study the heat energy storage of the battery in the low temperature environment. Lattice Boltzmann method is adopted to study the heat energy storage influence mechanism of the temperature regulation system of the low temperature phase-change materials. In addition, the influence of different physical parameters (thermal conductivity and latent heat of phase change) on the thermal insulation of the system in the process of temperature control is revealed. The results show that the mechanism of heat and mass transfer in the process of heat storage and temperature control is related to the different physical properties of phase change materials. The decrease of thermal conductivity and the increase of latent heat of phase change materials will greatly increase the effect of heat energy storage. Therefore, under the action of phase change latent heat, phase change material can effectively extend the holding time of the battery in the low temperature environment.


2019 ◽  
Vol 9 (4) ◽  
pp. 753 ◽  
Author(s):  
Shanju Yang ◽  
Zhan Liu ◽  
Bao Fu ◽  
Yu Chen

Frost formation degrades the performance of heat exchangers greatly, thus influencing the cryogenic refrigerator. Different from frost formation on the evaporator surface, the growth and migration of frost layer inside the heat exchanger is of low temperature and humidity. In addition to the constantly changing boundary conditions, the effective prediction is difficult. In the present study, a numerical model was proposed to analyze the frost formation in the cryogenic heat exchanger of a reverse Brayton air refrigerator. Under small amounts of moisture, the growing of frost layer was simulated through the numerical heat and mass transfer by adopting semiempirical correlations. The frost formation model was inserted into the transient model of refrigerator, and numerical calculations were performed on heat and mass transfer rates, and growth and migration of frost layers in forced convection conditions. Experiments were conducted under different air humidity to investigate the frost formation and verify the numerical model. Through the model, the influences of frosting on the refrigerator were evaluated under different moisture contents and running time. It can be used to predict the performance of air refrigerators with low humidity and provide a basis for improving the system operation and efficiency.


Author(s):  
Shuichi Umezawa ◽  
Haruo Amari ◽  
Hiroyuki Shimada ◽  
Takashi Matsuhisa ◽  
Ryo Fukushima ◽  
...  

This paper reports application study of newly developed turbo heat pump for 130 degrees Celsius (°C) water for an industrial process in an actual factory. The heat pump is characterized by high efficiency and large heat output, by using a state-of-the-art turbo compressor. The heat pump requires a low temperature heat source in order to achieve high efficiency. The heat demand is for several drying furnaces in the factory, which requires producing hot air of 120 °C. The heat exchanger was designed to produce the hot air. Experiments were conducted to confirm the performance of the heat exchanger under a reduced size of the heat exchanger. Low temperature heat sources are from both exhaust gas of the drying furnaces and that of an annealing furnace. The heat exchangers were also designed to recover heat of the exhaust gas from the two types of furnace. A thermal storage tank was prepared for the low temperature heat source, and for adjusting the time difference between the heat demand and the low temperature heat source. The size of the tank was determined by considering the schedule of furnaces operations. As a result of the present study, it was confirmed that the heat pump was able to satisfy the present heat demand while retaining high efficiency. Primary energy consumption and CO2 emission of the heat pump were calculated on the basis of the present results in order to compare them with those of the boilers.


Sign in / Sign up

Export Citation Format

Share Document