scholarly journals Analysis of the Molecular Interactions between Cytochromes P450 3A4 and 1A2 and Aflatoxins: A Docking Study

2019 ◽  
Vol 9 (12) ◽  
pp. 2467 ◽  
Author(s):  
Isui Abril García-Montoya ◽  
Norma Rosario Flores-Holguín ◽  
Linda-Lucila Landeros-Martínez ◽  
Mónica Alvarado-González ◽  
Quintín Rascón-Cruz ◽  
...  

Mycotoxins known as aflatoxins (AF) are produced as a secondary metabolite by some species of Aspergillus fungi. They are considered carcinogenic, hepatotoxic, teratogenic, and mutagenic. In this study, the molecular structure, chemical reactivity, and charge transfer values of AFB1, B2, G1, and G2 were analyzed using density functional theory. Different methodologies—B3LYP/6-311G(d,p) and M06-2X/6-311G(d,p)—were applied for geometrical calculations. Chemical reactivity parameters were used in the calculation of charge transfer values during the interaction between protein and ligand. The binding energy, the electrostatic interactions, and the amino acids of the active site were determined by molecular docking analysis between AF and cytochromes P450 (3A4 and 1A2), employing different PDB files (CYP3A4:1TQN, 2V0M, 4NY4 and 1W0E, and CYP1A2:2HI4). Molecular docking analysis indicated that the central rings of the AF are involved in the interaction with the HEM group of the active site. The differences in the molecular structure of the AF affect their position regarding the HEM group. The resulting configurations presented considerable variation in the amino acids and the position of the coupling. The charge transfer values showed that there is oxidative damage inside the active site and that the HEM group is responsible for the main charge transferences.

2021 ◽  
Vol 11 (9) ◽  
pp. 4067
Author(s):  
Linda-Lucila Landeros-Martínez ◽  
Néstor Gutiérrez-Méndez ◽  
Juan Pedro Palomares-Báez ◽  
Nora-Aydeé Sánchez-Bojorge ◽  
Juan Pablo Flores-De los Ríos ◽  
...  

Type 2 diabetes mellitus has been classified as the epidemic of the XXI century, making it a global health challenge. Currently, the commonly used treatment for this disease is acarbose, however, the high cost of this medicine has motivated the search for new alternatives. In this work, the maysin, a characteristic flavonoid from maize inflorescences, and its aglycon version, luteolin, are proposed as acarbose substitutes. For this, a theoretical comparative analysis was conducted on the molecular interactions of acarbose, maysin, and luteolin with human maltase-glucoamylase (NtMGAM), as well as their oxidative process. The binding energies in the active site of NtMGAM with acarbose, maysin, and luteolin molecules were predicted using a molecular docking approach applying the Lamarckian genetic algorithm method. Theoretical chemical reactivity parameters such as chemical hardness (η) and chemical potential (µ) of the acarbose, maysin, and luteolin molecules, as well as of the amino acids involved in the active site, were calculated using the electronic structure method called Density Functional Theory (DFT), employing the M06 meta-GGA functional in combination with the 6-31G(d) basis set. Furthermore, a possible oxidative process has been proposed from quantum-chemical calculations of the electronic charge transfer values (ΔN), between the amino acids of the active site and the acarbose, maysin, and luteolin. Molecular docking predictions were complemented with molecular dynamics simulations. Hence, it was demonstrated that the solvation of the protein affects the affinity order between NtMGAM and ligands.


2021 ◽  
Vol 1223 ◽  
pp. 128948
Author(s):  
H. Marshan Robert ◽  
D Usha ◽  
M. Amalanathan ◽  
R. Racil Jeya Geetha ◽  
M. Sony Michael Mary

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0126669 ◽  
Author(s):  
Jing Zhou ◽  
Guodi Lu ◽  
Honglan Wang ◽  
Junfeng Zhang ◽  
Jinao Duan ◽  
...  

2016 ◽  
Vol 15 (03) ◽  
pp. 1650021 ◽  
Author(s):  
Toufik Salah ◽  
Salah Belaidi ◽  
Nadjib Melkemi ◽  
Ismail Daoud ◽  
Salima Boughdiri

Current knowledge about Chagas disease, the potentially life-threatening illness caused by the protozoan parasite (Trypanosoma cruzi), has led to the development of new drugs and the understanding of their mode of action. The Conceptual Density-Functional Theory was applied to determine the active center sites of trypanocidal compounds, extended by the Molecular Docking analysis to identify the most favorable ligand conformation when bound to the active site of cruzain. Results such as CHELPG charges, Fukui function, MESP, and Molecular Docking analysis are reported and discussed in the present investigation. Whereas, a close agreement with experimental results was found to explain the possibility of studying the receptor-binding mode using these different axes.


2008 ◽  
Vol 3 (6) ◽  
pp. 1934578X0800300 ◽  
Author(s):  
Ifedayo V. Ogungbe ◽  
William N. Setzer

A molecular docking analysis has been carried out using monoterpene and sesquiterpene hydrocarbons and triterpenoids that have shown enzyme inhibitory activity as ligands for the cysteine protease cruzain. The binding energies of the docked ligands roughly correlate with their inhibitory activities. The orientations of the docked ligands are consistent with a mechanism whereby these hydrophobic compounds dock into a hydrophobic pocket near the active site, thereby blocking binding of the protein target to the protease.


2020 ◽  
Vol 14 (10) ◽  
pp. 52
Author(s):  
Usman Abdulfatai ◽  
Adamu Uzairu ◽  
Gideon Adamu Shallangwa ◽  
Sani Uba

In this present investigation, simulated molecular docking study of chloroquine and hydroxychloroquine compounds were investigated on the SARS-CoV2 enzyme to determine the types of amino acids responsible for the biochemical reaction at the binding site. A structure-based docking design technique was explored in designing a novel derivative of chloroquine for the treatment and management of new COVID 19 disease. To achieve this, the molecular docking simulation method was used to investigate the level of chloroquine and hydroxychloroquine (Drugs presently under clinical trial) interactions on SARS-CoV2 enzyme (a causative agent of COVID 19 disease). Chloroquine and hydroxychloroquine which has been debated as drugs for the management of COVID 19 were subjected to molecular docking analysis, and the binding energies generated were found to be -6.1 kcal/mol and -6.8 kcal/mol respectively. Moreover, novel 2-((4-((7-chloroquinolin-4 yl) amino)pentyl)((methylamino)methyl)amino) ethan-1-ol as an anti-SARS-CoV2 protease was designed through the structural modification of hydroxychloroquine. The binding energy of this drug candidate was found to be -6.9 kcal/mol. This novel drug was found to formed hydrogen and conventional interactions with the binding site of SARS-CoV2 protease through amino acids such as Glutamic acid (GLU166), Glycine (GLY143), Phenylalanine (PHE140), Asparagine (ASN142), Histidine (HIS163), His (HIS172, HIS41, HIS163), Leucine (LEU41, LEU27), Glycine (GLY143), Glutamine (GLN189), Methionine (MET49, MET165), Serine (SER 46), Cysteine (CYS145) and Threonine (THR25). With this binding energy, this new drug candidate could bind better to the human SARS-CoV2 protease’ binding site. This research provides a clue for other scientists on various ways of designing and identify the types of amino acids that may be responsible for biochemical action on SARS-CoV2 protease.


Sign in / Sign up

Export Citation Format

Share Document