scholarly journals Dynamic Voltage Optimization Based on In-Band Sensors and Machine Learning

2019 ◽  
Vol 9 (14) ◽  
pp. 2902
Author(s):  
Stan McClellan ◽  
Damian Valles ◽  
George Koutitas

A feedback-based architecture is presented for the distribution grid which enables the use of Machine Learning (ML) techniques for various applications, including Dynamic Voltage Optimization (DVO) and Demand Response (DR). In this architecture, sensor devices are resident on the distribution grid and therefore have a unique awareness of multiple system parameters. This enables the use of ongoing ML techniques for implementation of critical applications in the Smart Grid. Monitoring devices are placed at the endpoints and monitoring/control devices are placed along the power line on various types of grid-resident systems. Because the devices are grid-resident and interact directly with other devices on the same physical link, applications such as ML-assisted DVO can be targeted with very high confidence.

Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 14
Author(s):  
Laura Pérez ◽  
Juan Espeche ◽  
Tatiana Loureiro ◽  
Aleksandar Kavgić

DRIvE (Demand Response Integration Technologies) is a research and innovation project funded under the European Union’s Horizon 2020 Framework Program, whose main objective is unlocking the demand response potential in the distribution grid. DRIvE presented how the use of digital twins de-risks the implementation of demand response applications at the “Flexibility 2.0: Demand response and self-consumption based on the prosumer of Europe’s low carbon future” workshop within the conference “Sustainable Places 2020”. This workshop was organized to cluster and foster knowledge transfer between several EU projects, each developing innovative solutions within the field of demand response, energy flexibility, and optimized synergies between actors of the built environment and the power grid.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Kirill A. Korznikov ◽  
Dmitry E. Kislov ◽  
Jan Altman ◽  
Jiří Doležal ◽  
Anna S. Vozmishcheva ◽  
...  

Very high resolution satellite imageries provide an excellent foundation for precise mapping of plant communities and even single plants. We aim to perform individual tree recognition on the basis of very high resolution RGB (red, green, blue) satellite images using deep learning approaches for northern temperate mixed forests in the Primorsky Region of the Russian Far East. We used a pansharpened satellite RGB image by GeoEye-1 with a spatial resolution of 0.46 m/pixel, obtained in late April 2019. We parametrized the standard U-Net convolutional neural network (CNN) and trained it in manually delineated satellite images to solve the satellite image segmentation problem. For comparison purposes, we also applied standard pixel-based classification algorithms, such as random forest, k-nearest neighbor classifier, naive Bayes classifier, and quadratic discrimination. Pattern-specific features based on grey level co-occurrence matrices (GLCM) were computed to improve the recognition ability of standard machine learning methods. The U-Net-like CNN allowed us to obtain precise recognition of Mongolian poplar (Populus suaveolens Fisch. ex Loudon s.l.) and evergreen coniferous trees (Abies holophylla Maxim., Pinus koraiensis Siebold & Zucc.). We were able to distinguish species belonging to either poplar or coniferous groups but were unable to separate species within the same group (i.e. A. holophylla and P. koraiensis were not distinguishable). The accuracy of recognition was estimated by several metrics and exceeded values obtained for standard machine learning approaches. In contrast to pixel-based recognition algorithms, the U-Net-like CNN does not lead to an increase in false-positive decisions when facing green-colored objects that are similar to trees. By means of U-Net-like CNN, we obtained a mean accuracy score of up to 0.96 in our computational experiments. The U-Net-like CNN recognizes tree crowns not as a set of pixels with known RGB intensities but as spatial objects with a specific geometry and pattern. This CNN’s specific feature excludes misclassifications related to objects of similar colors as objects of interest. We highlight that utilization of satellite images obtained within the suitable phenological season is of high importance for successful tree recognition. The suitability of the phenological season is conceptualized as a group of conditions providing highlighting objects of interest over other components of vegetation cover. In our case, the use of satellite images captured in mid-spring allowed us to recognize evergreen fir and pine trees as the first class of objects (“conifers”) and poplars as the second class, which were in a leafless state among other deciduous tree species.


Author(s):  
Ricardo Faia ◽  
Bruno Canizes ◽  
Pedro Faria ◽  
Zita Vale ◽  
Jose M. Terras ◽  
...  

2020 ◽  
Vol 10 (14) ◽  
pp. 4965
Author(s):  
Yordanos Dametw Mamuya ◽  
Yih-Der Lee ◽  
Jing-Wen Shen ◽  
Md Shafiullah ◽  
Cheng-Chien Kuo

Fault location with the highest possible accuracy has a significant role in expediting the restoration process, after being exposed to any kind of fault in power distribution grids. This paper provides fault detection, classification, and location methods using machine learning tools and advanced signal processing for a radial distribution grid. The three-phase current signals, one cycle before and one cycle after the inception of the fault are measured at the sending end of the grid. A discrete wavelet transform (DWT) is employed to extract useful features from the three-phase current signal. Standard statistical techniques are then applied onto DWT coefficients to extract the useful features. Among many features, mean, standard deviation (SD), energy, skewness, kurtosis, and entropy are evaluated and fed into the artificial neural network (ANN), Multilayer perceptron (MLP), and extreme learning machine (ELM), to identify the fault type and its location. During the training process, all types of faults with variations in the loading and fault resistance are considered. The performance of the proposed fault locating methods is evaluated in terms of root mean absolute percentage error (MAPE), root mean squared error (RMSE), Willmott’s index of agreement (WIA), coefficient of determination ( R 2 ), and Nash-Sutcliffe model efficiency coefficient (NSEC). The time it takes for training and testing are also considered. The proposed method that discrete wavelet transforms with machine learning is a very accurate and reliable method for fault classifying and locating in both a balanced and unbalanced radial system. 100% fault detection accuracy is achieved for all types of faults. Except for the slight confusion of three line to ground (3LG) and three line (3L) faults, 100% classification accuracy is also achieved. The performance measures show that both MLP and ELM are very accurate and comparative in locating faults. The method can be further applied for meshed networks with multiple distributed generators. Renewable generations in the form of distributed generation units can also be studied.


2021 ◽  
Author(s):  
Geoffrey Bessardon ◽  
Emily Gleeson ◽  
Eoin Walsh

<p>An accurate representation of surface processes is essential for weather forecasting as it is where most of the thermal, turbulent and humidity exchanges occur. The Numerical Weather Prediction (NWP) system, to represent these exchanges, requires a land-cover classification map to calculate the surface parameters used in the turbulent, radiative, heat, and moisture fluxes estimations.</p><p>The land-cover classification map used in the HARMONIE-AROME configuration of the shared ALADIN-HIRLAM NWP system for operational weather forecasting is ECOCLIMAP. ECOCLIMAP-SG (ECO-SG), the latest version of ECOCLIMAP, was evaluated over Ireland to prepare ECO-SG implementation in HARMONIE-AROME. This evaluation suggested that sparse urban areas are underestimated and instead appear as vegetation areas in ECO-SG [1], with an over-classification of grassland in place of sparse urban areas and other vegetation covers (Met Éireann internal communication). Some limitations in the performance of the current HARMONIE-AROME configuration attributed to surface processes and physiography issues are well-known [2]. This motivated work at Met Éireann to evaluate solutions to improve the land-cover map in HARMONIE-AROME.</p><p>In terms of accuracy, resolution, and the future production of time-varying land-cover map, the use of a convolutional neural network (CNN) to create a land-cover map using Sentinel-2 satellite imagery [3] over Estonia [4] presented better potential outcomes than the use of local datasets [5]. Consequently, this method was tested over Ireland and proven to be more accurate than ECO-SG for representing CORINE Primary and Secondary labels and at a higher resolution [5]. This work is a continuity of [5] focusing on 1. increasing the number of labels, 2. optimising the training procedure, 3. expanding the method for application to other HIRLAM countries and 4. implementation of the new land-cover map in HARMONIE-AROME.</p><p> </p><p>[1] Bessardon, G., Gleeson, E., (2019) Using the best available physiography to improve weather forecasts for Ireland. In EMS Annual Meeting.Retrieved fromhttps://presentations.copernicus.org/EMS2019-702_presentation.pdf</p><p>[2] Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W.,. . . Køltzow, M. Ø. (2017). The HARMONIE–AROME Model Configurationin the ALADIN–HIRLAM NWP System. Monthly Weather Review, 145(5),1919–1935.https://doi.org/10.1175/mwr-d-16-0417.1</p><p>[3] Bertini, F., Brand, O., Carlier, S., Del Bello, U., Drusch, M., Duca, R., Fernandez, V., Ferrario, C., Ferreira, M., Isola, C., Kirschner, V.,Laberinti, P., Lambert, M., Mandorlo, G., Marcos, P., Martimort, P., Moon, S., Oldeman,P., Palomba, M., and Pineiro, J.: Sentinel-2ESA’s Optical High-ResolutionMission for GMES Operational Services, ESA bulletin. Bulletin ASE. Euro-pean Space Agency, SP-1322,2012</p><p>[4] Ulmas, P. and Liiv, I. (2020). Segmentation of Satellite Imagery using U-Net Models for Land Cover Classification, pp. 1–11,http://arxiv.org/abs/2003.02899, 2020</p><p>[5] Walsh, E., Bessardon, G., Gleeson, E., and Ulmas, P. (2021). Using machine learning to produce a very high-resolution land-cover map for Ireland. Advances in Science and Research, (accepted for publication)</p>


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 45-46
Author(s):  
Christian Pohlkamp ◽  
Kapil Jhalani ◽  
Niroshan Nadarajah ◽  
Inseok Heo ◽  
William Wetton ◽  
...  

Background: Cytomorphology is the gold standard for quick assessment of peripheral blood and bone marrow samples in hematological neoplasms. It is a broadly-accepted method for orchestrating more specific diagnostics including immunophenotyping or genetics. Inter-/intra-observer-reproducibility of single cell classification is only 75 to 90%. Only a limited number of cells (100 - 500 cells/smear) is read in a time-consuming procedure. Machine learning (ML) is more reliable where human skills are limited, i.e. in handling large amounts of data or images. We here tested ML to differentiate peripheral blood leukocytes in a high throughput hematology laboratory. Aim: To establish an ML-based cell classifier capable of identifying healthy and pathologic cells in digitalized peripheral blood smear scans at an accuracy competitive with or outperforming human expert level. Methods: We selected >2,600 smears out of our unique archive of > 250,000 peripheral blood smears from hematological neoplasms. Depending on quality, we scanned up to 1,000 single cell images per smear. For image acquisition, a Metafer Scanning System (Zeiss Axio Imager.Z2 microscope, automatic slide feeder and automatic oiling device) from MetaSystems (Altlussheim, GER) was used. Areas of interest were defined by pre-scan in 10x magnification followed by high resolution scan in 40x to generate cell images for analysis. Average capture times for 300/500 cells were 3:43/4:37 min We set up a supervised ML-learning model using colour images (144x144 pixels) as input, outputting predicted probabilities of 21 predefined classes. We used ImageNet-pretrained Xception as our base model. We trained, evaluated and deployed the model using Amazon SageMaker on a subset of 82,974 images randomly selected from 514,183 cells captured and labelled for this study. 20 different cell types and one garbage class were classified. We included cell type categories referring to the critical importance of detecting rare leukemia subtypes (e.g. APL). Numbers of images from respective 21 classes ranged from 1,830 to 14,909 (median: 2,945). Minority classes were up-sampledto handle imbalances. Each picture was labelled by highly skilled technicians (median years practicing in this laboratory: 5) and two independent hematologists (median years at microscope: 20). Results: On a separate test set of 8,297 cells, our classifier was able to predict any of the five cell types occurring in the peripheral blood of healthy individuals (PMN, lymphocytes, monocytes, eosinophils, basophils) at very high median accuracy (97.0%) Median prediction accuracy of 15 rare or pathological cell types was 91.3%. For six critical pathological cell forms (myeloblasts, atypical/bilobulated promyelocytes in APL/APLv, hairy cells, lymphoma cells,plasma cells), median accuracy was 93.4% (sensitivity 93.8%). We saw a very high "T98 accuracy" for these cell types (98.5%) which is the accuracy of cell type predictions with prediction probability >0.98 (achieved in 2231/2417 cases), implicating that critical cells predicted with probability <0.98 should be flagged for human expert validation with priority. For all 21 classes median accuracy was 91.7%. Accuracy was lower for cells representing consecutive steps of maturation, e.g. promyelo-/myelo-/metamyelocytes, reproducing inconsistencies from the human-built phenotypic classification system (s.Fig.). Conclusions: We demonstrate an automated workflow using automatic microscopic cell capturing and ML-driven cell differentiation in samples of hematologic patients. Reproducibility, accuracy, sensitivity and specificity are above 90%, for many cell types above 98%. By flagging suspicious cells for humanvalidation, this tool can support even experienced hematology professionals, especially in detecting rare cell types. Given an appropriate scanning speed, it clearly outperforms human investigators in terms of examination time and number of differentiated cells. An ML-based intelligence can make its skills accessible to hematology laboratories on site or after upload of scanned cell images, independent of time/location. A cloud-based infrastructure is available. A prospective head to head challenge between ML-based classifier and human experts comparing sensitivity and accuracy for detection of all cell classes in peripheral blood will be tested to proof suitability for routine use (NCT 4466059). Figure Disclosures Heo: AWS: Current Employment. Wetton:AWS: Current Employment. Drescher:MetaSystems: Current Employment. Hänselmann:MetaSystems: Current Employment. Lörch:MetaSystems: Current equity holder in private company.


Sign in / Sign up

Export Citation Format

Share Document