scholarly journals Vibro-Acoustic Performance of a Sandwich Plate with Periodically Inserted Resonators

2019 ◽  
Vol 9 (18) ◽  
pp. 3651 ◽  
Author(s):  
Zhiwei Guo ◽  
Jie Pan ◽  
Meiping Sheng

The vibro-acoustic performance of a sandwich plate with periodic locally resonant (LR) units is examined in this paper, with specific focus on the effect of periodic resonators on the average radiation efficiency and the acoustic radiation to the far field. In order to assess the radiation performance, the band-gap properties of an infinite periodic structure and the vibrational response of a finite periodic structure are first studied with closed-form solutions. Subsequently, the acoustic radiation efficiency of the LR sandwich plate is obtained using the concepts of modal radiation. It is shown that the acoustic radiation power can be reduced significantly, not only in the band-gap but also at frequencies close below the band-gap, due to either the decrease in radiation efficiency or the decrease in the vibration response. Thus, the periodic resonators provide a broader attenuation band for the purposes of noise reduction than for vibration reduction. However, for frequencies close above the band-gap, the acoustic performance became worse, owing to the increase in acoustic radiation efficiency. Fortunately, the increased sound radiation above the band-gap can be reduced by adding a small damping to the resonator, which further broadens the attenuation frequency band. The reason for the variation of acoustic radiation efficiency is also studied and can be physically explained by the effective mass of an LR unit, where increased mass corresponds to decreased radiation efficiency and decreased mass corresponds to increased radiation efficiency. Thus, the effective mass can be a useful parameter for designers to estimate which frequency component will be acoustically reduced or acoustically enhanced in a practical design.

Author(s):  
Ji Woo Yoo

The farfield acoustic radiation efficiency and power of a flexible rectangular plate coupled to a relatively stiffer beam are investigated. A numerical model based on a modal method that consists of a plate with sliding edges surrounded by four stiff beams is studied. Assuming that each beam is a heavy mass, a plate with clamped edges is realised, and this model is verified. This model is then extended to a beam-stiffened plate. If the bending stiffness of the excited beam is large, the radiation efficiency increases in the corner- and edge-mode frequency regions and is higher than that of the clamped plate in terms of the averaged response for randomly selected excitations. The reason for this effect is that the corner and edge areas that radiate sound are broader because the behaviour of the plate is governed by the motion of the stiff beam. This is explained in terms of the wavenumber and the wavelength of a stiff beam and a flexible plate. It is shown that this is true only when the excitation is applied to the beam, and the radiation efficiency is similar if the plate is excited. In addition, it was found that the radiation power decreases with increasing beam stiffness because the vibration of the plate actually decreases. In addition, it was shown that the variation in the radiation efficiency of the beam-stiffened plate is smaller when the beam is excited than when the plate is excited.


1974 ◽  
Vol 52 (8) ◽  
pp. 743-747 ◽  
Author(s):  
A. Filion ◽  
E. Fortin

The intrinsic photoconductivity of several samples of the alloy GaAsxSb1−x has been studied at 4.2 K in the presence of magnetic fields of up to 65 kG. Values for the band-gap, the reduced effective mass of the carriers, the energy of the longitudinal optical phonons across the alloy composition are deduced from the measurements.


2021 ◽  
Vol 45 (4) ◽  
pp. 345-352
Author(s):  
Seongjong Park ◽  
Jongho Ham ◽  
Hyungsik Park ◽  
Heesung Lee ◽  
Dongyeon Lee

2013 ◽  
Vol 457-458 ◽  
pp. 703-706 ◽  
Author(s):  
De Jin Qian ◽  
Xue Ren Wang ◽  
Xu Hong Miao

The acoustic performance of sound-isolating and decoupled tiles is studied from macroscopic and microscopic. First, the sound absorption and reverse sound insulation performance of sound-isolating and decoupled tiles is studied based on laminated media; then the acoustic decoupling materials influence on acoustic radiation of double cylindrical shell underwater is studied, using a double-layer cylindrical structure of large-scale as experimental model .There are large amount of operating modes designed in this experiment, such as all laying, partial laying, laying and so on. The results show that sound-isolating and decoupled tiles not only have the effect of weakening the absorption of reflections, but also have reverse sound insulation effect, which increases as frequency increases; for single point mechanical vibration, the tiles can effectively inhibit vibration and sound radiation of high frequency in the double shell.


Author(s):  
Pei-Tai Chen

Abstract The paper explores the physical meaning underlying the surface complex acoustic power of a vibrating body, and its relationship to radiation efficiency under mono-frequency oscillations. The vibrating can be the entire wetted surface, or only a part of the surface with the remaining surface being held rigid. The surface complex acoustic power can be computed by the surface integral of pressure multiplying the complex conjugate of normal velocity. Based on the Gaussian Divergence theorem, it is shown that the real part of the complex power is the power radiated into a far field, while that the imaginary part pertains to the volume integral of the difference between the acoustic kinetic energy density with the potential energy density over the volume between the vibrating surface and the far field. The dynamical behavior of the acoustic field can be viewed as an infinite degree of freedom mass/spring/dashpot system, where the mass and spring are the inertia effects and acoustic compression effects of the acoustic particles and the dashpot is due to the plane wave relationship of the pressure waves at the far field that the acoustic energy propagates away from the acoustic field. By the model of the mass /spring/dashpot system, the phase angle of the complex acoustic power is identified as an indication of the ability of the vibrating surface to radiate acoustic power. The phase angle of the complex power depends on the distribution of the surface normal velocity. In order to study the normal velocity profile in relation to the ability to radiate acoustic energy, the previously established radiation mode (Chen and Ginsberg, 1995) is introduced and extended to situations in which a part of the surface is held rigid. An orthogonal condition for the velocity radiation modes is also established such that arbitrary velocity profiles can be decomposed into radiation modes. The acoustic modal radiation efficiency, defined as the radiated modal acoustic power divided by the surface integral of mean square normal velocity, is investigated in terms of the acoustic eigenvalue of that mode. Several different geometries of vibrating bodies are used to demonstrate the correlation of radiation efficiencies to eigenvalues of radiation modes, which include a rectangular baffled vibrating membrane, a box with only one of the six surfaces vibrating, a slender spheroidal body, and a spherical body. This correlation of acoustic radiation characteristics for different geometries is also demonstrated for a spheroidal body vibrating at some areas with other areas being held rigid.


2001 ◽  
Vol 109 (1) ◽  
pp. 203-215 ◽  
Author(s):  
Kenneth A. Cunefare ◽  
M. Noelle Currey ◽  
M. E. Johnson ◽  
S. J. Elliott

2013 ◽  
Vol 834-836 ◽  
pp. 1351-1359
Author(s):  
Yong Yong Zhu

An analysis based on the first kind of Lagranges equations was presented for investigating the vibration and acoustic radiation of underwater finite cylindrical shell with interior plate under multiple excitations. The strain energy and kinetic energy of cylinder and plate were gained by the theory of plates and shells, and the potential energy of excitation and fluid loading was found based on acoustic-vibration coupling, and the connection conditions of plate and cylinder were expressed by Lagrange multipliers, then the vibro-acoustic equations of finite cylinder with interior plate under shafting excitation were established. The influences of excitations and plates position to the vibro-acoustic characteristics were studied by the equations. The results show that the frequency components of plate-shell structure are more complex. For the double excitations on plate, the distance between excitations is larger, the average velocity and sound radiation power are lower, while the radiation efficiency is larger. The modeling and analytical methods adopted in this paper are also available for more complex composite structure.


2012 ◽  
Vol 152-154 ◽  
pp. 281-286 ◽  
Author(s):  
Arpan Gupta ◽  
Kian Meng Lim ◽  
Chye Heng Chew

Sonic crystals are periodic structures made of sound hard scatterers which attenuate sound in a range of frequencies. For an infinite periodic structure, this range of frequencies is known as band gap, and is determined by the geometric arrangement of the scatterers. In this paper, a parametric study on rectangular sonic crystal is presented. It is found that geometric spacing between the scatterers in the direction of sound propagation affects the center frequency of the band gap. Reducing the geometric spacing between the scatterers in the direction perpendicular to the sound propagation helps in better sound attenuation. Such rectangular arrangement of scatterers gives better sound attenuation than the regular square arrangement of scatterers. The model for parametric study is also supported by some experimental results.


Sign in / Sign up

Export Citation Format

Share Document