scholarly journals Design of Warship Simulation Using Variable-Chromosome Genetic Algorithm

2019 ◽  
Vol 9 (19) ◽  
pp. 4131 ◽  
Author(s):  
Kang-moon Park ◽  
Suk-hoon Shin ◽  
Donghoon Shin ◽  
Sung-do Chi

A genetic algorithm (GA) is a global search algorithm based on biological genetics. GAs are generally used for industrial applications, artificial neural networks, web applications, the defense industry, and so on. However, it is difficult to apply GAs to more complex situations because of the fixed number of chromosomes. In this research, in order to overcome this limitation, we propose a variable-chromosome GA with a chromosome attachment feature. Verification of the algorithm is carried out through anti-submarine high value unit (HVU) escort mission simulations. Ultimately, it is confirmed that the GA using the variable chromosome is more effective in dealing with highly complex missions, whereby the number of chromosomes gradually increases.

2000 ◽  
Vol 176 ◽  
pp. 135-136
Author(s):  
Toshiki Aikawa

AbstractSome pulsating post-AGB stars have been observed with an Automatic Photometry Telescope (APT) and a considerable amount of precise photometric data has been accumulated for these stars. The datasets, however, are still sparse, and this is a problem for applying nonlinear time series: for instance, modeling of attractors by the artificial neural networks (NN) to the datasets. We propose the optimization of data interpolations with the genetic algorithm (GA) and the hybrid system combined with NN. We apply this system to the Mackey–Glass equation, and attempt an analysis of the photometric data of post-AGB variables.


Author(s):  
А.В. Милов

В статье представлены математические модели на основе искусственных нейронных сетей, используемые для управления индукционной пайкой. Обучение искусственных нейронных сетей производилось с использованием многокритериального генетического алгоритма FFGA. This article presents mathematical models based on artificial neural networks used to control induction soldering. The artificial neural networks were trained using the FFGA multicriteria genetic algorithm. The developed models allow to control induction soldering under conditions of incomplete or unreliable information, as well as under conditions of complete absence of information about the technological process.


Sign in / Sign up

Export Citation Format

Share Document