scholarly journals Accurate Constant Phase Elements Dedicated for Audio Signal Processing

2019 ◽  
Vol 9 (22) ◽  
pp. 4888 ◽  
Author(s):  
Jiri Petrzela

This review paper introduces real-valued two-terminal fully passive RC ladder structures of the so-called constant phase elements (CPEs). These lumped electronic circuits can be understood as two-terminal elements described by fractional-order (FO) dynamics, i.e., current–voltage relation described by non-integer-order integration or derivation. Since CPEs that behave almost ideally are still not available as off-the-shelf components, the correct behavior must be approximated in the frequency domain and is valid only in the predefined operational frequency interval. In this study, an audio frequency range starting with 20 Hz and ending with 20 kHz has been chosen. CPEs are designed and values tabularized for predefined phase shifts that are commonly used in practice. If constructed carefully, a maximum phase error less than 0.5° can be achieved. Several examples of direct utilization of designed CPEs in signal processing applications are provided.

2011 ◽  
Vol 18 (1) ◽  
pp. 77-90 ◽  
Author(s):  
Piotr Falkowski ◽  
Andrzej Malcher

Dynamically Programmable Analog Arrays in Acoustic Frequency Range Signal ProcessingField programmable analog arrays (FPAA), thanks to their flexibility and reconfigurability, give the designers quite new possibilities in analog circuit design. The number of both academic projects on FPAA and applications of commercially available programmable devices is still growing. This paper explores the properties and parameters of two most popular FPAA circuits: the AnadigmVortex AN221E04 and AnadigmApex AN231E04 from the Anadigm company. The research conducted by the authors led to the discovery of some undocumented features of these devices. Several applications for audio processing were built and tested. The results show that these circuits can be used in medium-demanding audio applications. Thanks to dynamic reconfigurability, they also allow to build an universal analog audio signal processor. These circuits can also act as a versatile platform for rapid prototyping and educational purposes.


1985 ◽  
Vol 47 (2) ◽  
pp. 115-117 ◽  
Author(s):  
Abraham Kadish ◽  
William Peter ◽  
Michael E. Jones

2007 ◽  
Vol 38 (7) ◽  
pp. 11-17
Author(s):  
Ronald M. Aarts

Conventionally, the ultimate goal in loudspeaker design has been to obtain a flat frequency response over a specified frequency range. This can be achieved by carefully selecting the main loudspeaker parameters such as the enclosure volume, the cone diameter, the moving mass and the very crucial “force factor”. For loudspeakers in small cabinets the results of this design procedure appear to be quite inefficient, especially at low frequencies. This paper describes a new solution to this problem. It consists of the combination of a highly non-linear preprocessing of the audio signal and the use of a so called low-force-factor loudspeaker. This combination yields a strongly increased efficiency, at least over a limited frequency range, at the cost of a somewhat altered sound quality. An analytically tractable optimality criterion has been defined and has been verified by the design of an experimental loudspeaker. This has a much higher efficiency and a higher sensitivity than current low-frequency loudspeakers, while its cabinet can be much smaller.


2008 ◽  
Vol 2008 (1) ◽  
Author(s):  
Jonathan Taquet ◽  
Bernard Besserer ◽  
Abdelali Hassaine ◽  
Etienne Decenciere

2021 ◽  
Author(s):  
EMINE ALDIRMAZ ◽  
M. Güler ◽  
E. Güler

Abstract In this study, the Cu-23.37%Zn-13.73%Al-2.92%Mn (at.%) alloy was used. Phase identification was performed with the Scanning electron microscope (SEM), and energy-dispersive X-ray (EDX). We observed in the austenite phase in Cu-23.37%Zn-13.73%Al-2.92%Mn (at.%) alloy. To produce a new Schottky diode, CuZnAlMn alloy was exploited as a Schottky contact on p-type semiconductor silicon substrate. To calculate the characteristics of the produced diode, current-voltage (I-V), capacitance-voltage (C-V) and conductance-voltage (G-V) analyzes were taken at room temperature (300 K), in the dark and under various lights. Using electrical measurements, the diode's ideality factor (n), barrier height (Φb), and other diode parameters were calculated. Besides, the conductance / capacitance-voltage (G/C-V) characteristics of the diode were studied and in a wide frequency interval at room temperature. Also, the capacitance and conductance values strongly ​​ rely on the frequency. From the present experimental results, the obtained diode can be used for optoelectronic devices.


Sign in / Sign up

Export Citation Format

Share Document