scholarly journals Experimental and Numerical Studies of Stress Distribution in an Expanding Pin Joint System

2021 ◽  
Vol 3 (1) ◽  
pp. 46-64
Author(s):  
Soheil Salahshour ◽  
Øyvind Karlsen ◽  
Hirpa Gelgele Lemu

Pin joints are widely used mechanisms in different industrial machineries such as aircrafts, cranes, ships, and offshore drilling equipment providing a joint with possibility of relative rotation about one single axis. The rigidity of the joint and its service lifetime depend on the clamping force in the contact region that is provided by the applied torque. However, due to the tolerance needed for insertion of a pin in the equipment support bore, the pin is prone to relative displacement inside the bore. The amplitude of this relative displacement usually increases as time passes and since the material of the support often has lower quality grade than the pin, it leads to creation of slack in the equipment and malfunctioning of the machine. An Expanding Pin System (EPS) can be a solution to this problem where the split sleeve expands to remove the gap while the joint is torqued. Therefore, slack in the joint system disappears and 360° contact area could be achieved, providing a better stress distribution and preventing the stress localization. Determining the EPS preload and the resulting contact pressure and stresses in the joint parts are important to avoid damaging to the contact surfaces of the joints and making the dismantling of the EPS difficult. Therefore, finding the amount of the required torque is a compromise between preventing slack in the EPS and prohibiting damage to the joint parts. Stress analysis in this study is performed based on the industrially recommended torque for the EPS type under study. This article reports the study conducted on the stress distribution and the magnitude of stresses exerted to the equipment support when EPS is installed on the machine. To achieve this purpose and to investigate the stress distribution in the joint, both experimental and finite element (FE) methods were used. The experimental results show how much of the applied energy to the EPS in the form of torque is spent to expand the split sleeve and test boss and also to overcome friction. The finite element analysis provides magnitude and distribution of stresses in the EPS components.

2020 ◽  
Vol 27 (1) ◽  
pp. 1-5
Author(s):  
Hanadi Naji ◽  
Nibras Khalid ◽  
Mutaz Medhlom

This paper aims at presenting and discussing the numerical studies performed to estimate the mechanical and thermal behavior of RC flat slabs at elevated temperature and fire. The numerical analysis is carried out using finite element programs by developing models to simulate the performance of the buildings subjected to fire. The mechanical and thermal properties of the materials obtained from the experimental work are involved in the modeling that the outcomes will be more realistic. Many parameters related to fire resistance of the flat slabs have been studied and the finite element analysis results reveal that the width and thickness of the slab, the temperature gradient, the fire direction, the exposure duration and the thermal restraint are important factors that influence the vertical deflection, bending moment and force membrane of the flat slabs exposed to fire. However, the validation of the models is verified by comparing their results to the available experimental date. The finite element modeling contributes in saving cost and time consumed by experiments.


2011 ◽  
Vol 230-232 ◽  
pp. 1029-1033
Author(s):  
Xiao Qin Zhou ◽  
Shao Xin Zhao ◽  
Zhi Wei Zhu ◽  
Jie Qiong Lin ◽  
Dan Luo

In order to reveal the mechanistic characteristics during the elliptical vibration cutting (EVC), A simplified 2-D finite element model is developed. The characteristics of the cutting forces during the EVC process are investigated by comparison with the conventional cutting. The results indicate that the lower averaging values of cutting forces can be obtained and an obvious inverse phenomenon of the thrust force is also observed during the EVC process, which may be beneficial to the chip formation. A detailed analysis of the equivalent stress distribution during the EVC process is carried out. A transient stress distribution is observed during the EVC process, the highly localized Von Mises stress in the tool-chip contact region throughout one EVC cycle may help to form a more continuous chip and lead to the ductile regime removal of brittle materials.


2014 ◽  
Vol 680 ◽  
pp. 249-253
Author(s):  
Zhang Qi Wang ◽  
Jun Li ◽  
Wen Gang Yang ◽  
Yong Feng Cheng

Strain clamp is an important connection device in guy tower. If the quality of the compression splicing position is unsatisfied, strain clamp tends to be damaged which may lead to the final collapse of a guy tower as well as huge economic lost. In this paper, stress distribution on the compressible tube and guy cable is analyzed by FEM, and a large equivalent stress of guy cable is applied to the compression splicing position. During this process, a finite element model of strain clamp is established for guy cables at compression splicing position, problems of elastic-plastic and contracting are studied and the whole compressing process of compressible position is simulated. The guy cable cracks easily at the position of compressible tube’s port, the inner part of the compressible tube has a larger equivalent stress than outside.


Author(s):  
Eyassu Woldesenbet ◽  
Haftay Hailu

The need for the rehabilitation of bridges and structures is becoming more apparent as the number of deficient civil structure grows and the cost of replacement is becoming prohibitive. These leads to the search of alternative methods, such as rehabilitation, to put the deteriorated structures back to normal operation with the least possible cost. One such method is the use of composite plates adhesively bonded to concrete as reinforcement and to prevent the propagation of crack within the concrete structure. In this study the load transfer and the resulting stress distribution in the composite-concrete adhesion system is investigated using the finite element method. The effects of the different bond parameters are studied using the finite element. In addition, results of the finite element analysis are proved to be in agreement with the analytical solution of shear stress distribution in the adhesion layer that was developed in previous studies by the authors.


2013 ◽  
Vol 325-326 ◽  
pp. 1083-1086
Author(s):  
Yu Ming Han ◽  
Mei Jing Guo

The troweling of wall space is an essential decorative process and the development of wall-troweling robots, which are expected to release labors from the burdensome pargeting tasks, is growing to be a promising sector in todays architectural industry. In this paper, a static analysis is conducted for the key components of troweling disk and vertical guiderail, based on the proposed virtual prototype of wall-troweling robots. The stress distribution across these components provides a sound basis for the structural design. With the finite element analysis module of SolidWorks package, the paper investigates the modal characteristics of the key components operating under practical conditions. The research effort in this paper is contributive to the design and manufacturing of wall-troweling robots.


2011 ◽  
Vol 460-461 ◽  
pp. 44-47
Author(s):  
Wei Hua Kuang

The cold expanding diameter process was simulated by the software of DEFORM. The finite element model of tube and dies were built. The object position definition, the inter object setting, movement definition and simulation step were correctly set. The deformation, total velocity distribution and equivalent stress distribution were predicted. The numerical simulation results showed that the finite element analysis could exactly describe the plastic deformation and stress distribution during the forming process.


2015 ◽  
Vol 777 ◽  
pp. 143-147
Author(s):  
Li Chen Sun ◽  
Qi Liu ◽  
Jin Ming Chen ◽  
Guo Feng Wang ◽  
Dong Hui Meng ◽  
...  

According to the requirement of vacuum leak detection container for small satellite, a set of vacuum leak detection container is developed. This paper discuss the design of model and the finite element analysis of different models. Through calculating the variation of the displacement X, Y, Z and the stress distribution of different parts and the rotation Z of the door flange and casing flange, determining whether the deflection of flange under internal vacuum will cause the sealing ring the fall of the sealing effect.


1993 ◽  
Vol 115 (4) ◽  
pp. 364-372 ◽  
Author(s):  
H. Chen ◽  
Y.-J. Chao

In the thin shell analysis of welded pad reinforced nozzles in pressure vessels, no contact between pad and vessel is often assumed. The significance of this contact force to the stress distribution in the structure is little known. In this paper, stress results from the finite element analysis, which includes the contact force between the pad and the vessel, are reported. A comparison of the finite element results with those from thin shell analysis and experiments shows that the finite element method with contact assumption yields improved theoretical prediction for the stress distribution. The effect of both the gap and friction between the pad and the vessel are also investigated.


2013 ◽  
Vol 483 ◽  
pp. 297-300
Author(s):  
Jia Qi Jin ◽  
Ye Yuan ◽  
Xian Rong Wang

Based on the finite element analysis of the slip coat in the compulsory lifting system of hyper-thermal snubbing operation injected by steam, the static analysis with regard to the slip coat is undoubtedly employed taking advantage of the finite element software. And then, the failure forms are deduced and the maximum allowable stress is calculated by analyzing the stress distribution.


Sign in / Sign up

Export Citation Format

Share Document