scholarly journals A New Clear-Sky Method for Assessing Photosynthetically Active Radiation at the Surface Level

Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 219
Author(s):  
William Wandji Nyamsi ◽  
Philippe Blanc ◽  
John A. Augustine ◽  
Antti Arola ◽  
Lucien Wald

A clear–sky method to estimate the photosynthetically active radiation (PAR) at the surface level in cloudless atmospheres is presented and validated. It uses a fast and accurate approximation adopted in several radiative transfer models, known as the k-distribution method and the correlated-k approximation, which gives a set of fluxes accumulated over 32 established wavelength intervals. A resampling technique, followed by a summation, are applied over the wavelength range [0.4, 0.7] µm in order to retrieve the PAR fluxes. The method uses as inputs the total column contents of ozone and water vapor, and optical properties of aerosols provided by the Copernicus Atmosphere Monitoring Service. To validate the method, its outcomes were compared to instantaneous global photosynthetic photon flux density (PPFD) measurements acquired at seven experimental sites of the Surface Radiation Budget Network (SURFRAD) located in various climates in the USA. The bias lies in the interval [−12, 61] µmol m−2 s−1 ([−1, 5] % in values relative to the means of the measurements at each station). The root mean square error ranges between 37 µmol m−2 s−1 (3%) and 82 µmol m−2 s−1 (6%). The squared correlation coefficient fluctuates from 0.97 to 0.99. This comparison demonstrates the high level of accuracy of the presented method, which offers an accurate estimate of PAR fluxes in cloudless atmospheres at high spatial and temporal resolutions useful for several bio geophysical models.

2018 ◽  
Author(s):  
William Wandji Nyamsi ◽  
Phillipe Blanc ◽  
John A. Augustine ◽  
Antti Arola ◽  
Lucien Wald

Abstract. A method is described that estimates the photosynthetically active radiation (PAR) at ground level in cloud-free conditions. It uses a fast approximation of the libRadtran radiative transfer numerical model, known as the k-distribution method and the correlated-k approximation of Kato et al. (1999). LibRadtran provides irradiances aggregated over several fixed spectral bands and a spectral resampling is proposed followed by an aggregation in the range [400, 700] nm. The Copernicus Atmosphere Monitoring Service (CAMS) produces daily estimates of the aerosol properties, and total column contents in water vapor and ozone that are input to the method. A comparison of the results is performed against instantaneous measurements of global Photosynthetic Photon Flux Density (PPFD) on a horizontal plane made in cloud-free conditions at seven sites of the Surface Radiation network (SURFRAD) in the USA in various climates. The bias ranges between −12 µmol m−2 s−1 (−1 % of the mean value at Desert Rock) and +61 µmol m−2 s−1 (+5 % at Penn. State Univ). The root mean square error ranges from 37 µmol m−2 s−1 (3 %) to 82 µmol m−2 s−1 (6 %). The coefficient of determination R2 ranges between 0.97 and 0.99. This work demonstrates the quality of the proposed method combined with the CAMS products.


2012 ◽  
Vol 51 (1) ◽  
pp. 150-160 ◽  
Author(s):  
Jun Qin ◽  
Kun Yang ◽  
Shunlin Liang ◽  
Wenjun Tang

AbstractPhotosynthetically active radiation (PAR) is absorbed by plants to carry out photosynthesis. Its estimation is important for many applications such as ecological modeling. In this study, a broadband transmittance scheme for solar radiation at the PAR band is developed to estimate clear-sky PAR values. The influence of clouds is subsequently taken into account through sunshine-duration data. This scheme is examined without local calibration against the observed PAR values under both clear- and cloudy-sky conditions at seven widely distributed Surface Radiation Budget Network (SURFRAD) stations. The results indicate that the scheme can estimate the daily mean PAR at these seven stations under all-sky conditions with root-mean-square error and mean bias error values ranging from 6.03 to 6.83 W m−2 and from −2.86 to 1.03 W m−2, respectively. Further analyses indicate that the scheme can estimate PAR values well with globally available aerosol and ozone datasets. This suggests that the scheme can be applied to regions for which observed aerosol and ozone data are not available.


2020 ◽  
Vol 12 (3) ◽  
pp. 2209-2221
Author(s):  
Dalei Hao ◽  
Ghassem R. Asrar ◽  
Yelu Zeng ◽  
Qing Zhu ◽  
Jianguang Wen ◽  
...  

Abstract. Downward shortwave radiation (SW) and photosynthetically active radiation (PAR) play crucial roles in Earth system dynamics. Spaceborne remote sensing techniques provide a unique means for mapping accurate spatiotemporally continuous SW–PAR, globally. However, any individual polar-orbiting or geostationary satellite cannot satisfy the desired high temporal resolution (sub-daily) and global coverage simultaneously, while integrating and fusing multisource data from complementary satellites/sensors is challenging because of co-registration, intercalibration, near real-time data delivery and the effects of discrepancies in orbital geometry. The Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR), launched in February 2015, offers an unprecedented possibility to bridge the gap between high temporal resolution and global coverage and characterize the diurnal cycles of SW–PAR globally. In this study, we adopted a suite of well-validated data-driven machine-learning models to generate the first global land products of SW–PAR, from June 2015 to June 2019, based on DSCOVR/EPIC data. The derived products have high temporal resolution (hourly) and medium spatial resolution (0.1∘×0.1∘), and they include estimates of the direct and diffuse components of SW–PAR. We used independently widely distributed ground station data from the Baseline Surface Radiation Network (BSRN), the Surface Radiation Budget Network (SURFRAD), NOAA's Global Monitoring Division and the U.S. Department of Energy's Atmospheric System Research (ASR) program to evaluate the performance of our products, and we further analyzed and compared the spatiotemporal characteristics of the derived products with the benchmarking Clouds and the Earth's Radiant Energy System Synoptic (CERES) data. We found both the hourly and daily products to be consistent with ground-based observations (e.g., hourly and daily total SWs have low biases of −3.96 and −0.71 W m−2 and root-mean-square errors (RMSEs) of 103.50 and 35.40 W m−2, respectively). The developed products capture the complex spatiotemporal patterns well and accurately track substantial diurnal, monthly, and seasonal variations in SW–PAR when compared to CERES data. They provide a reliable and valuable alternative for solar photovoltaic applications worldwide and can be used to improve our understanding of the diurnal and seasonal variabilities of the terrestrial water, carbon and energy fluxes at various spatial scales. The products are freely available at https://doi.org/10.25584/1595069 (Hao et al., 2020).


2015 ◽  
Vol 12 (1) ◽  
pp. 5-10 ◽  
Author(s):  
W. Wandji Nyamsi ◽  
B. Espinar ◽  
P. Blanc ◽  
L. Wald

Abstract. The k-distribution method and the correlated-k approximation of Kato et al. (1999) is a computationally efficient approach originally designed for calculations of the broadband solar radiation by dividing the solar spectrum in 32 specific spectral bands from 240 to 4606 nm. This paper describes a technique for an accurate assessment of the photosynthetically active radiation (PAR) from 400 to 700 nm at ground level, under clear-sky conditions using twelve of these spectral bands. It is validated against detailed spectral calculations of the PAR made by the radiative transfer model libRadtran. For the direct and global PAR irradiance, the bias is −0.4 W m−2 (−0.2%) and −4 W m−2 (−1.3%) and the root mean square error is 1.8 W m−2 (0.7%) and 4.5 W m−2 (1.5%). For the direct and global Photosynthetic Photon Flux Density, the biases are of about +10.3 μmol m−2 s−1 (+0.8%) and 1.9 μmol m−2 s−1 (−0.1%) respectively, and the root mean square error is 11.4 μmol m−2 s−1 (0.9%) and 4.0 μmol m−2 s−1 (0.3%). The correlation coefficient is greater than 0.99. This technique provides much better results than two state-of-the-art empirical methods computing the daily mean of PAR from the daily mean of broadband irradiance.


2020 ◽  
Author(s):  
Dalei Hao ◽  
Ghassem R. Asrar ◽  
Yelu Zeng ◽  
Qing Zhu ◽  
Jianguang Wen ◽  
...  

Abstract. Downward shortwave radiation (SW) and photosynthetically active radiation (PAR) play crucial roles in Earth system dynamics. Spaceborne remote sensing techniques provide a unique means for mapping accurate spatio-temporally-continuous SW/PAR, globally. However, any individual polar-orbiting or geostationary satellite cannot satisfy the desired high temporal resolution (sub-daily) and global coverage simultaneously, while integrating and fusing multi-source data from complementary satellites/sensors is challenging because of co-registration, inter-calibration, near real-time data delivery and the effects of discrepancies in orbital geometry. The Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR), launched in February 2015, offers an unprecedented possibility to bridge the gap between high temporal resolution and global coverage, and characterize the diurnal cycles of SW/PAR globally. In this study, we adopted a suite of well-validated data-driven machine-learning models to generate the first global land products of SW/PAR, from June 2015 to June 2019, based on DSCOVR/EPIC data. The derived products have high temporal resolution (hourly) and medium spatial resolution (0.1° × 0.1°), and include estimates of the direct and diffuse components of SW/PAR. We used independently widely-distributed ground station data from the Baseline Surface Radiation Network (BSRN), the Surface Radiation Budget Network (SURFRAD), NOAA's Global Monitoring Division and the U.S. Department of Energy’s Atmospheric System Research (ASR) program to evaluate the performance of our products, and further analyzed and compared the spatio-temporal characteristics of the derived products with the benchmarking Clouds and the Earth's Radiant Energy System Synoptic (CERES) data. We found both the hourly and daily products to be consistent with ground-based observations (e.g., hourly and daily total SWs have low biases of −3.96 and −0.71 W/m2 and root mean square errors (RMSEs) of 103.50 and 35.40 W/m2, respectively). The developed products capture the complex spatio-temporal patterns well and accurately track substantial diurnal, monthly, and seasonal variations of SW/PAR when compared to CERES data. They provide a reliable and valuable alternative for solar photovoltaic applications worldwide and can be used to improve our understanding of the diurnal and seasonal variabilities of the terrestrial water, carbon and energy fluxes at various spatial scales. The products are freely available at https://doi.org/10.25584/1595069 (Hao et al., 2020).


Author(s):  
J.A. Raven ◽  
J.E. Kübler ◽  
J. Beardall

The lowest photon flux density of photosynthetically active radiation at which O2-evolving marine photolithotrophs appear to be able to grow is some 10 nmol photon m−2 s−1, while marine non-O2-evolvers can grow at 4 nmol photon m−2 s−1, in both cases with the photon flux density averaged over the 24 hour L:D cycle. Constraints on the ability to grow at very low fluxes of photosynthetically active radiation fall into three categories. Category one includes essential processes whose efficiency is independent of the rate of energy input, but whose catalysts show phylogenetic variation leading to different energy costs for a given process in different taxa, e.g. light-harvesting complexes, RUBISCO and probably in the sensitivity of PsII to photodamage. The second category comprises essential processes whose efficiency decreases with decreasing energy input rate as a result of back-reactions independent of the energy input rate, e.g. charge recombination following charge separation by PsII and short-circuit H+ fluxes across the thylakoid membrane which decrease the fraction of pumped H+ which can be used in adenosine diphosphate phosphorylation. Category two also includes that component of protein turnover which cannot be related to replacement of polypeptides which were incorrectly assembled following uncorrected errors of transcription or translation, or which were damaged by processes whose rate increases with increasing energy input rate such as photodamage to PsII. The third category includes only O2-dependent damage to the D1 protein of PsII whose rate increases with a decreasing incident flux of photosynthetically active radiation. Processes in categories two and three are most likely to impose the lower limit on the photon flux density which can support photolithotrophic growth. The available literature, mainly on organisms which are not adapted to growth at very low photon flux densities, suggests that three major limitations (charge recombination in PsII, H+ leakage and slippage, and protein turnover) can individually impose lower limits in excess of 20 nmol photon m−2 s−1 on photolithotrophic growth. Furthermore, these three limitations are interactive, so that considering all three processes acting in series leads to an even higher predicted lower photon flux density limit for photolithotrophic growth.


2020 ◽  
Vol 10 (22) ◽  
pp. 8007
Author(s):  
Ana García-Rodríguez ◽  
Sol García-Rodríguez ◽  
Montserrat Díez-Mediavilla ◽  
Cristina Alonso-Tristán

Plant growth is directly related to levels of photosynthetic photon flux density, Qp. The improvement of plant-growth models therefore requires accurate estimations of the Qp parameter that is often indirectly calculated on the basis of its relationship with solar irradiation, RS, due to the scarcity of ground measurements of photosynthetic photon flux density. In this experimental campaign in Burgos, Spain, between April 2019 and January 2020, an average value of the Qp/Rs ratio is determined on the basis of measurements at ten-minute intervals. The most influential factor in the Qp/Rs ratio, over and above any daily or seasonal pattern, is the existence of overcast sky conditions. The CIE standard sky classification can be used to establish an unequivocal characterization of the cloudiness conditions of homogeneous skies. In this study, the relation between the CIE standard sky type and Qp/Rs is investigated. Its conclusions were that the Qp/Rs values, the average of which was 1.93±0.15 μmol·J−1, presented statistically significant differences for each CIE standard sky type. The overcast sky types presented the highest values of the ratio, while the clear sky categories presented the lowest and most dispersed values. During the experimental campaign, only two exceptions were noted for covered and partial covered sky-type categories, respectively, sky types 5 and 9. Their values were closer to those of categories classified as clear sky according to the CIE standard. Both categories presented high uniformity in terms of illumination.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 344
Author(s):  
Md Momtazur Rahman ◽  
Mikhail Vasiliev ◽  
Kamal Alameh

Manipulation of the LED illumination spectrum can enhance plant growth rate and development in grow tents. We report on the identification of the illumination spectrum required to significantly enhance the growth rate of sweet basil (Ocimum basilicum L.) plants in grow tent environments by controlling the LED wavebands illuminating the plants. Since the optimal illumination spectrum depends on the plant type, this work focuses on identifying the illumination spectrum that achieves significant basil biomass improvement compared to improvements reported in prior studies. To be able to optimize the illumination spectrum, several steps must be achieved, namely, understanding plant biology, conducting several trial-and-error experiments, iteratively refining experimental conditions, and undertaking accurate statistical analyses. In this study, basil plants are grown in three grow tents with three LED illumination treatments, namely, only white LED illumination (denoted W*), the combination of red (R) and blue (B) LED illumination (denoted BR*) (relative red (R) and blue (B) intensities are 84% and 16%, respectively) and a combination of red (R), blue (B) and far-red (F) LED illumination (denoted BRF*) (relative red (R), blue (B) and far-red (F) intensities are 79%, 11%, and 10%, respectively). The photosynthetic photon flux density (PPFD) was set at 155 µmol m−2 s−1 for all illumination treatments, and the photoperiod was 20 h per day. Experimental results show that a combination of blue (B), red (R), and far-red (F) LED illumination leads to a one-fold increase in the yield of a sweet basil plant in comparison with only white LED illumination (W*). On the other hand, the use of blue (B) and red (R) LED illumination results in a half-fold increase in plant yield. Understanding the effects of LED illumination spectrum on the growth of plant sweet basil plants through basic horticulture research enables farmers to significantly improve their production yield, thus food security and profitability.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Bin Liu ◽  
Shuo Zhao ◽  
Pengli Li ◽  
Yilu Yin ◽  
Qingliang Niu ◽  
...  

AbstractIn plants, alternative splicing (AS) is markedly induced in response to environmental stresses, but it is unclear why plants generate multiple transcripts under stress conditions. In this study, RNA-seq was performed to identify AS events in cucumber seedlings grown under different light intensities. We identified a novel transcript of the gibberellin (GA)-deactivating enzyme Gibberellin 2-beta-dioxygenase 8 (CsGA2ox8). Compared with canonical CsGA2ox8.1, the CsGA2ox8.2 isoform presented intron retention between the second and third exons. Functional analysis proved that the transcript of CsGA2ox8.1 but not CsGA2ox8.2 played a role in the deactivation of bioactive GAs. Moreover, expression analysis demonstrated that both transcripts were upregulated by increased light intensity, but the expression level of CsGA2ox8.1 increased slowly when the light intensity was >400 µmol·m−2·s−1 PPFD (photosynthetic photon flux density), while the CsGA2ox8.2 transcript levels increased rapidly when the light intensity was >200 µmol·m−2·s−1 PPFD. Our findings provide evidence that plants might finely tune their GA levels by buffering against the normal transcripts of CsGA2ox8 through AS.


Sign in / Sign up

Export Citation Format

Share Document