scholarly journals Analysis of Air Pollution in Urban Areas with Airviro Dispersion Model—A Case Study in the City of Sheffield, United Kingdom

Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 285 ◽  
Author(s):  
Said Munir ◽  
Martin Mayfield ◽  
Daniel Coca ◽  
Lyudmila S Mihaylova ◽  
Ogo Osammor

Two air pollutants, oxides of nitrogen (NOx) and particulate matter (PM10), are monitored and modelled employing Airviro air quality dispersion modelling system in Sheffield, United Kingdom. The aim is to determine the most significant emission sources and their spatial variability. NOx emissions (ton/year) from road traffic, point and area sources for the year 2017 were 5370, 6774, and 2425, whereas those of PM10 (ton/year) were 345, 1449, and 281, respectively, which are part of the emission database. The results showed three hotspots of NOx, namely the Sheffield City Centre, Darnall and Tinsley Roundabout (M1 J34S). High PM10 concentrations were shown mainly between Sheffield Forgemasters International (a heavy engineering steel company) and Meadowhall Shopping Centre. Several emission scenarios were tested, which showed that NOx concentrations were mainly controlled by road traffic, whereas PM10 concentrations were controlled by point sources. Spatiotemporal variability and public exposure to air pollution were analysed. NOx concentration was greater than 52 µg/m3 in about 8 km2 area, where more than 66 thousand people lived. Models validated by observations can be used to fill in spatiotemporal gaps in measured data. The approach used presents spatiotemporal situation awareness maps that could be used for decision making and improving the urban infrastructure.

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 179
Author(s):  
Said Munir ◽  
Martin Mayfield ◽  
Daniel Coca

Small-scale spatial variability in NO2 concentrations is analysed with the help of pollution maps. Maps of NO2 estimated by the Airviro dispersion model and land use regression (LUR) model are fused with measured NO2 concentrations from low-cost sensors (LCS), reference sensors and diffusion tubes. In this study, geostatistical universal kriging was employed for fusing (integrating) model estimations with measured NO2 concentrations. The results showed that the data fusion approach was capable of estimating realistic NO2 concentration maps that inherited spatial patterns of the pollutant from the model estimations and adjusted the modelled values using the measured concentrations. Maps produced by the fusion of NO2-LCS with NO2-LUR produced better results, with r-value 0.96 and RMSE 9.09. Data fusion adds value to both measured and estimated concentrations: the measured data are improved by predicting spatiotemporal gaps, whereas the modelled data are improved by constraining them with observed data. Hotspots of NO2 were shown in the city centre, eastern parts of the city towards the motorway (M1) and on some major roads. Air quality standards were exceeded at several locations in Sheffield, where annual mean NO2 levels were higher than 40 µg/m3. Road traffic was considered to be the dominant emission source of NO2 in Sheffield.


2020 ◽  
Vol 4 (1) ◽  
pp. 17
Author(s):  
Saisantosh Vamshi Harsha Madiraju ◽  
Ashok Kumar

Transportation sources are a major contributor to air pollution in urban areas. The role of air quality modeling is vital in the formulation of air pollution control and management strategies. Many models have appeared in the literature to estimate near-field ground level concentrations from mobile sources moving on a highway. However, current models do not account explicitly for the effect of wind shear (magnitude) near the ground while computing the ground level concentrations near highways from mobile sources. This study presents an analytical model based on the solution of the convective-diffusion equation by incorporating the wind shear near the ground for gaseous pollutants. The model input includes emission rate, wind speed, wind direction, turbulence, and terrain features. The dispersion coefficients are based on the near field parameterization. The sensitivity of the model to compute ground level concentrations for different inputs is presented for three different downwind distances. In general, the model shows Type III sensitivity (i.e., the errors in the input will show a corresponding change in the computed ground level concentrations) for most of the input variables. However, the model equations should be re-examined for three input variables (wind velocity at the reference height and two variables related to the vertical spread of the plume) to make sure that that the model is valid for computing ground level concentrations.


Author(s):  
Purnendu S M Tripathi ◽  
Ambuj Kumar ◽  
Ashok Chandra

Since last decades world, predominantly urban areas, is experiencing huge voluminous road traffic growth, resulting in heavy congestion, air pollution, accidents, and poor efficiency.  Many people every day are the victims of this poor management of tremendous traffic. Since many years, there had been some automation in managing the traffic namely Electronic Toll Collection (ETC), Electronic parking payment, normal traffic information etc. However, there are little efforts for making the system more advanced. Recently, several kinds of research are being launched by many countries to develop Intelligent Transport System (ITS), with the objectives to minimize congestion, ensure better safety, reduce air pollution etc. ITS are planned to establish robust communication between vehicle to vehicle (V2V), vehicle to pedestrian (V2P), vehicle to infrastructure (V2I), and vehicle to network (V2N). Initially, for communication links ITS, deploys Wi-Fi network, but because of limited capacity and huge requirement, some links use 5.8 GHz radio frequency for such purposes. IEEE, International Telecommunications Union (ITU) and other advanced research organisations are studying 700 MHz band and mm frequency bands for advanced ITS. ITS is poised to use Information & Communication Technology (ICT) networks for such purposes. ITU has established Study Groups/study questions for addressing ITS issues. The World Radio Conference (WRC-2019) has made a Recommendation 208 regarding harmonization of frequency bands for ITS applications. This paper presents a comprehensive overview of ITS, its applications and analysis etc. The radio frequency spectrum aspects and role of 5 G in ITS are also described in detail.  


1973 ◽  
Vol 13 (1) ◽  
pp. 125
Author(s):  
Hanns F. Hartmann

The gases comprising the atmosphere are in dynamic balance both with the oceans and the dry land of the continents. The mechanisms which operate to keep the atmospheric content of oxygen, nitrogen, carbon and sulphur constant are now well defined. The capacity of the system to absorb excess gaseous impurities is adequate on a global basis with the exception of carbon dioxide.Air pollution is thus a local problem resulting from the overloading of a particular air space with contaminants. The greater part of air pollution is due to the combustion of fossil fuels. Ease of control and virtual freedom from sulphur give natural gas an advantage over liquid and solid fuels as far as air pollution control is concerned. Oxides of nitrogen are produced when natural gas is burned but in smaller quantities than in the combustion of other fuels. In high capacity industrial gas burners where oxides of nitrogen may be generated in large quantities control is easier and can achieve a lower level of oxides of nitrogen than is the case with other fuels.The large scale use of natural gas to solve the air pollution problems of Pittsburgh, Los Angeles and many other cities is proof of the usefulness of gas in this respect. Specialised applications include use in incinerators and industrial after burners. Advances in removal of impurities from fuels and of air pollutants from products of combustion combined with rising gas prices will in time displace gas from its preeminent position in air pollution control. It is, however, likely to retain its advantage in small installations and in dense urban areas. In public and private transport its use will probably remain limited.While technological developments in the distant future may eventually displace fossil fuels, gas will have a large share of the fuel market until that day comes and will contribute effectively to the control of air pollution.


Author(s):  
Martin Otto Paul Ramacher ◽  
Matthias Karl

To evaluate the effectiveness of alternative policies and measures to reduce air pollution effects on urban citizen’s health, population exposure assessments are needed. Due to road traffic emissions being a major source of emissions and exposure in European cities, it is necessary to account for differentiated transport environments in population dynamics for exposure studies. In this study, we applied a modelling system to evaluate population exposure in the urban area of Hamburg in 2016. The modeling system consists of an urban-scale chemistry transport model to account for ambient air pollutant concentrations and a dynamic time-microenvironment-activity (TMA) approach, which accounts for population dynamics in different environments as well as for infiltration of outdoor to indoor air pollution. We integrated different modes of transport in the TMA approach to improve population exposure assessments in transport environments. The newly developed approach reports 12% more total exposure to NO2 and 19% more to PM2.5 compared with exposure estimates based on residential addresses. During the time people spend in different transport environments, the in-car environment contributes with 40% and 33% to the annual sum of exposure to NO2 and PM2.5, in the walking environment with 26% and 30%, in the cycling environment with 15% and 17% and other environments (buses, subway, suburban, and regional trains) with less than 10% respectively. The relative contribution of road traffic emissions to population exposure is highest in the in-car environment (57% for NO2 and 15% for PM2.5). Results for population-weighted exposure revealed exposure to PM2.5 concentrations above the WHO AQG limit value in the cycling environment. Uncertainties for the exposure contributions arising from emissions and infiltration from outdoor to indoor pollutant concentrations range from −12% to +7% for NO2 and PM2.5. The developed “dynamic transport approach” is integrated in a computationally efficient exposure model, which is generally applicable in European urban areas. The presented methodology is promoted for use in urban mobility planning, e.g., to investigate on policy-driven changes in modal split and their combined effect on emissions, population activity and population exposure.


Author(s):  
Mihaela Budianu ◽  
Valeriu Nagacevschi ◽  
Matei Macoveanu

Over the last decades, air pollution has become one of the greatest challenges negatively affecting human health and the entire environment, including air, water, soil, vegetation, and urban areas. Lately, special attention has been given to mathematical modelling for diffusion of pollutants in the atmosphere as a particularly effective and efficient method that can be used to study, control and reduce air pollution. The diversity of models developed by different research groups imposed a rigorous understanding of model types in order to apply them correctly according to local or regional problems of air pollution phenomenon. Tus the authors have developed and improved two mathematical models for dispersion of air pollutants. Tis paper presents a case study of dispersion of powders in suspension originating from 14 point sources that correspond to 5 economic agents in the agroindustrial area of Vaslui city using a computer simulation based on the mathematical model Pol 15sm, for multiple point sources of pollution, designed by the authors.


1973 ◽  
Vol 7 (9) ◽  
pp. 924
Author(s):  
Elmer Robinson ◽  
H.N.M. Stewart ◽  
R.G. Derwent

Author(s):  
Mohammad Hashem Askariyeh ◽  
Madhusudhan Venugopal ◽  
Haneen Khreis ◽  
Andrew Birt ◽  
Josias Zietsman

Recent studies suggest that the transportation sector is a major contributor to fine particulate matter (PM2.5) in urban areas. A growing body of literature indicates PM2.5 exposure can lead to adverse health effects, and that PM2.5 concentrations are often elevated close to roadways. The transportation sector produces PM2.5 emissions from combustion, brake wear, tire wear, and resuspended dust. Traffic-related resuspended dust is particulate matter, previously deposited on the surface of roadways that becomes resuspended into the air by the movement of traffic. The objective of this study was to use regulatory guidelines to model the contribution of resuspended dust to near-road traffic-related PM2.5 concentrations. The U.S. Environmental Protection Agency (EPA) guidelines for quantitative hotspot analysis were used to predict traffic-related PM2.5 concentrations for a small network in Dallas, Texas. Results show that the inclusion of resuspended dust in the emission and dispersion modeling chain increases prediction of near-road PM2.5 concentrations by up to 74%. The results also suggest elevated PM2.5 concentrations near arterial roads. Our results are discussed in the context of human exposure to traffic-related air pollution.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S119-S119 ◽  
Author(s):  
Debora Rizzuto ◽  
Giulia Grande ◽  
Petter Ljungman ◽  
Tom Bellander

Abstract Aim: We aimed to investigate the association between long-term air pollution and cognitive decline and dementia, and to clarify the role of CVD on the studied association. Methods: We examined 3150 dementia-free 60+ year-olds in the Swedish National study on Aging and Care in Kungsholmen, Stockholm for up to 13 years, during which 363 persons developed dementia. Outdoor air pollution levels at the home address were assessed yearly for all participants, using a dispersion model for nitrogen oxides (NOX), mainly emitted from road traffic. Mixed-effect linear regression models were used to quantify the association between air pollution and cognitive decline (with the Mini Mental State Examination). The risk of dementia, in keeping with the Diagnostic and Statistical Manual of Mental Disorders IV edition, was estimated using competing-risks models, considering death as competing event, and considering an exposure window 0-5 years before a year at risk. Stratified analyses by CVD were also performed. Results: Higher levels of traffic-related residential air pollution were associated with steeper cognitive decline over the follow-up period. After controlling for potential confounders, higher levels of air pollution were associated with increased risk of dementia (HR: 1.13, 95%CI: 1.05-1.22, for an µg/m3 unit increase NOX). The stratified analyses showed that the presence of CVD enhanced the effect of air pollution on dementia risk. Conclusion: Long-term exposure to traffic-related air pollution was associated with a higher risk of dementia. Cardiovascular disease might have played a role in this association.


Sign in / Sign up

Export Citation Format

Share Document