scholarly journals Near-Road Traffic-Related Air Pollution: Resuspended PM2.5 from Highways and Arterials

Author(s):  
Mohammad Hashem Askariyeh ◽  
Madhusudhan Venugopal ◽  
Haneen Khreis ◽  
Andrew Birt ◽  
Josias Zietsman

Recent studies suggest that the transportation sector is a major contributor to fine particulate matter (PM2.5) in urban areas. A growing body of literature indicates PM2.5 exposure can lead to adverse health effects, and that PM2.5 concentrations are often elevated close to roadways. The transportation sector produces PM2.5 emissions from combustion, brake wear, tire wear, and resuspended dust. Traffic-related resuspended dust is particulate matter, previously deposited on the surface of roadways that becomes resuspended into the air by the movement of traffic. The objective of this study was to use regulatory guidelines to model the contribution of resuspended dust to near-road traffic-related PM2.5 concentrations. The U.S. Environmental Protection Agency (EPA) guidelines for quantitative hotspot analysis were used to predict traffic-related PM2.5 concentrations for a small network in Dallas, Texas. Results show that the inclusion of resuspended dust in the emission and dispersion modeling chain increases prediction of near-road PM2.5 concentrations by up to 74%. The results also suggest elevated PM2.5 concentrations near arterial roads. Our results are discussed in the context of human exposure to traffic-related air pollution.

Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1086
Author(s):  
Polina Maciejczyk ◽  
Lung-Chi Chen ◽  
George Thurston

In this review, we elucidate the central role played by fossil fuel combustion in the health-related effects that have been associated with inhalation of ambient fine particulate matter (PM2.5). We especially focus on individual properties and concentrations of metals commonly found in PM air pollution, as well as their sources and their adverse health effects, based on both epidemiologic and toxicological evidence. It is known that transition metals, such as Ni, V, Fe, and Cu, are highly capable of participating in redox reactions that produce oxidative stress. Therefore, particles that are enriched, per unit mass, in these metals, such as those from fossil fuel combustion, can have greater potential to produce health effects than other ambient particulate matter. Moreover, fossil fuel combustion particles also contain varying amounts of sulfur, and the acidic nature of the resulting sulfur compounds in particulate matter (e.g., as ammonium sulfate, ammonium bisulfate, or sulfuric acid) makes transition metals in particles more bioavailable, greatly enhancing the potential of fossil fuel combustion PM2.5 to cause oxidative stress and systemic health effects in the human body. In general, there is a need to further recognize particulate matter air pollution mass as a complex source-driven mixture, in order to more effectively quantify and regulate particle air pollution exposure health risks.


2012 ◽  
Vol 13 (3) ◽  
pp. 705-715 ◽  
Author(s):  
Marko Tainio ◽  
Katarzyna Juda-Rezler ◽  
Magdalena Reizer ◽  
Aleksander Warchałowski ◽  
Wojciech Trapp ◽  
...  

2020 ◽  
Author(s):  
Rıdvan Karacan

<p>Today, production is carried out depending on fossil fuels. Fossil fuels pollute the air as they contain high levels of carbon. Many studies have been carried out on the economic costs of air pollution. However, in the present study, unlike the former ones, economic growth's relationship with the COVID-19 virus in addition to air pollution was examined. The COVID-19 virus, which was initially reported in Wuhan, China in December 2019 and affected the whole world, has caused many cases and deaths. Researchers have been going on studying how the virus is transmitted. Some of these studies suggest that the number of virus-related cases increases in regions with a high level of air pollution. Based on this fact, it is thought that air pollution will increase the number of COVID-19 cases in G7 Countries where industrial production is widespread. Therefore, the negative aspects of economic growth, which currently depends on fossil fuels, is tried to be revealed. The research was carried out for the period between 2000-2019. Panel cointegration test and panel causality analysis were used for the empirical analysis. Particulate matter known as PM2.5[1] was used as an indicator of air pollution. Consequently, a positive long-term relationship has been identified between PM2.5 and economic growth. This relationship also affects the number of COVID-19 cases.</p><p><br></p><p><br></p><p>[1] "Fine particulate matter (PM2.5) is an air pollutant that poses the greatest risk to health globally, affecting more people than any other pollutant (WHO, 2018). Chronic exposure to PM2.5 considerably increases the risk of respiratory and cardiovascular diseases in particular (WHO, 2018). For these reasons, population exposure to (outdoor or ambient) PM2.5 has been identified as an OECD Green Growth headline indicator" (OECD.Stat).</p>


Author(s):  
Jill Hahn ◽  
Diane R. Gold ◽  
Brent A. Coull ◽  
Marie C. McCormick ◽  
Patricia W. Finn ◽  
...  

Prenatal maternal exposure to air pollution may cause adverse health effects in offspring, potentially through altered immune responses. Maternal psychosocial distress can also alter immune function and may increase gestational vulnerability to air pollution exposure. We investigated whether prenatal exposure to air pollution is associated with altered immune responses in cord blood mononuclear cells (CBMCs) and potential modification by maternal depression in 463 women recruited in early pregnancy (1999–2001) into the Project Viva longitudinal cohort. We estimated black carbon (BC), fine particulate matter (PM2.5), residential proximity to major roadways, and near-residence traffic density, averaged over pregnancy. Women reported depressive symptoms in mid-pregnancy (Edinburgh Postnatal Depression Scale) and depression history by questionnaire. Immune responses were assayed by concentrations of three cytokines (IL-6, IL-10, and TNF-α), in unstimulated or stimulated (phytohemagglutinin (PHA), cockroach extract (Bla g 2), house dust mite extract (Der f 1)) CBMCs. Using multivariable linear or Tobit regression analyses, we found that CBMCs production of IL-6, TNF-a, and IL-10 were all lower in mothers exposed to higher levels of PM2.5 during pregnancy. A suggestive but not statistically significant pattern of lower cord blood cytokine concentrations from ever (versus never) depressed women exposed to PM2.5, BC, or traffic was also observed and warrants further study.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Richard Toro Araya ◽  
Robert Flocchini ◽  
Rául G. E. Morales Segura ◽  
Manuel A. Leiva Guzmán

Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter.


Author(s):  
Cavin K. Ward‐Caviness, ◽  
Mahdieh Danesh Yazdi, ◽  
Joshua Moyer, ◽  
Anne M. Weaver, ◽  
Wayne E. Cascio, ◽  
...  

Background Long‐term air pollution exposure is a significant risk factor for inpatient hospital admissions in the general population. However, we lack information on whether long‐term air pollution exposure is a risk factor for hospital readmissions, particularly in individuals with elevated readmission rates. Methods and Results We determined the number of readmissions and total hospital visits (outpatient visits+emergency room visits+inpatient admissions) for 20 920 individuals with heart failure. We used quasi‐Poisson regression models to associate annual average fine particulate matter at the date of heart failure diagnosis with the number of hospital visits and 30‐day readmissions. We used inverse probability weights to balance the distribution of confounders and adjust for the competing risk of death. Models were adjusted for age, race, sex, smoking status, urbanicity, year of diagnosis, short‐term fine particulate matter exposure, comorbid disease, and socioeconomic status. A 1‐µg/m 3 increase in fine particulate matter was associated with a 9.31% increase (95% CI, 7.85%–10.8%) in total hospital visits, a 4.35% increase (95% CI, 1.12%–7.68%) in inpatient admissions, and a 14.2% increase (95% CI, 8.41%–20.2%) in 30‐day readmissions. Associations were robust to different modeling approaches. Conclusions These results highlight the potential for air pollution to play a role in hospital use, particularly hospital visits and readmissions. Given the elevated frequency of hospitalizations and readmissions among patients with heart failure, these results also represent an important insight into modifiable environmental risk factors that may improve outcomes and reduce hospital use among patients with heart failure.


2020 ◽  
Author(s):  
Bujin Bekbulat ◽  
Joshua S. Apte ◽  
Dylan B Millet ◽  
Allen Robinson ◽  
Kelley C. Wells ◽  
...  

<p>Analysis of a large national dataset of fine particulate matter (PM2.5) and ozone air pollution from the US Environmental Protection Agency indicate opposing differences in average concentrations during the covid response period, relative to expected levels. These are the two most important pollutants in terms of public health impacts and regulatory non-attainment in the US. Post-covid response, average PM2.5 levels are slightly higher (~5%) than expected; average ozone levels are slightly lower (~5%). The size of post-response ozone anomaly has decreased with time and by week 6 after the first stay-at-home order was enacted (April 29- May 5, 2020), ozone levels were higher than expected. In addition, no individual US state had lower-than-expected PM2.5 and ozone for all weeks post- covid response. Two non-covid factors, meteorology and regional transport, do not fully explain observed trends. These findings are unexpected given the large reduction in many household’s activities associated with “stay at home” and other covid responses. We hypothesize that this result partly arises from the fact that ozone and the majority of PM2.5 are secondary pollutants formed in the atmosphere from emissions from many sources (i.e., not just traffic). Preliminary analysis of nitrogen dioxide (NO2) data in a few cities reveals substantially lower-than-expected (~30%) concentrations post-covid. NO2 is a primary pollutant and is much more strongly associated with traffic than PM2.5 or ozone. </p><p><br></p>


Sign in / Sign up

Export Citation Format

Share Document