scholarly journals Coal to Biomass Conversion as a Path to Sustainability: A Hypothetical Scenario at Pego Power Plant (Abrantes, Portugal)

Resources ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 84
Author(s):  
Margarida Casau ◽  
Diana C. M. Cancela ◽  
João C. O. Matias ◽  
Marta Ferreira Dias ◽  
Leonel J. R. Nunes

Energy consumption is associated with economic growth, but it comes with a toll regarding the environment. Renewable energies can be considered substitutes for fossil fuels and may contribute to reducing the environmental degradation that the world is presently facing. With this research, we aimed to offer a broader view of the state-of-the-art in this field, particularly regarding coal and biomass. The main objective is to present a viable and sustainable solution for the coal power plants still in operation, using as a hypothetical example the Pego Power Plant, the last operating coal fueled power plant in Portugal. After the characterization of land use and energy production in Portugal, and more particularly in the Médio Tejo region, where the power plant is located, the availability of biomass was assessed and it was concluded that the volume of biomass needed to keep the Pego power plant working exclusively with biomass is much lower than the yearly growth volume of biomass in the region, which means that this transition would be viable in a sustainable way. This path is aligned with policies to fight climate change, since the use of biomass for energy is characterized by low levels of GHGs emissions when compared to coal. The risk of rural fires would be reduced, and the economic and social impact for this region would be positive.

2020 ◽  
Author(s):  
Rodrigo Saraiva Dantas ◽  
Maria Alejandra Liendo ◽  
Vera Lucia Duarte Ferreira ◽  
Rodrigo Bortoluzzi

Abstract Coal Power Plants need to control SO 2 emissions to the atmosphere from the boiler flue gases, in order to reach standards according to guidelines determined by the Conselho Nacional de Meio Ambiente - CONAMA. For this purpose hydrated lime is used, which is, in fact, produced from lime at the power plant. Hydrated lime is injected into the equipment called desulphuriser that operates capturing the sulfur dioxide from the boiler flue gas. Due to the importance of this process, the present work aimed to evaluate several points that involve: the production of hydrated lime from lime, the analysis of the quality of lime received, the study of the hydration process. Moreover it was evaluated the impact of the temperature of reaction through to the hydration efficiency according to the methodology and routine proposed. In addition, complementary analysis were carried out on the characterization of lime and hydrated lime and the correlation between the main process parameters measured and recorded in lime hydration control system. In relation to the results of hydration efficiency, it was possible to observe its increase when the maximum temperature of the reaction stage was lower, reaching results up to 85%.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 900
Author(s):  
Ioanna Skoulidou ◽  
Maria-Elissavet Koukouli ◽  
Arjo Segers ◽  
Astrid Manders ◽  
Dimitris Balis ◽  
...  

In this work, we investigate the ability of a data assimilation technique and space-borne observations to quantify and monitor changes in nitrogen oxides (NOx) emissions over Northwestern Greece for the summers of 2018 and 2019. In this region, four lignite-burning power plants are located. The data assimilation technique, based on the Ensemble Kalman Filter method, is employed to combine space-borne atmospheric observations from the high spatial resolution Sentinel-5 Precursor (S5P) Tropospheric Monitoring Instrument (TROPOMI) and simulations using the LOTOS-EUROS Chemical Transport model. The Copernicus Atmosphere Monitoring Service-Regional European emissions (CAMS-REG, version 4.2) inventory based on the year 2015 is used as the a priori emissions in the simulations. Surface measurements of nitrogen dioxide (NO2) from air quality stations operating in the region are compared with the model surface NO2 output using either the a priori (base run) or the a posteriori (assimilated run) NOx emissions. Relative to the a priori emissions, the assimilation suggests a strong decrease in concentrations for the station located near the largest power plant, by 80% in 2019 and by 67% in 2018. Concerning the estimated annual a posteriori NOx emissions, it was found that, for the pixels hosting the two largest power plants, the assimilated run results in emissions decreased by ~40–50% for 2018 compared to 2015, whereas a larger decrease, of ~70% for both power plants, was found for 2019, after assimilating the space-born observations. For the same power plants, the European Pollutant Release and Transfer Register (E-PRTR) reports decreased emissions in 2018 and 2019 compared to 2015 (−35% and −38% in 2018, −62% and −72% in 2019), in good agreement with the estimated emissions. We further compare the a posteriori emissions to the reported energy production of the power plants during the summer of 2018 and 2019. Mean decreases of about −35% and−63% in NOx emissions are estimated for the two larger power plants in summer of 2018 and 2019, respectively, which are supported by similar decreases in the reported energy production of the power plants (~−30% and −70%, respectively).


Author(s):  
Selorme Agbleze ◽  
Fernando V. Lima ◽  
Natarianto Indrawan ◽  
Rupendranath Panday ◽  
Paolo Pezzini ◽  
...  

Abstract Due to the increased penetration of renewable power sources into the electric grid, the current number of existing coal-fired power plants shifting from baseload to load-following operations has also increased. This shift creates challenges especially for the power industry as coal-fired power plants were not designed for ramping situations, leading to added stress on major components of these plants. This stress causes the system to degrade over time and eventually develop faults. As boilers are still the primary component that fails and causes forced outages, accurate characterization of faults and fractures of boilers is now becoming increasingly critical to reduce plant downtime and extend the plant life during cycling operations. This work focuses on modeling sections of a subcritical coal-fired power plant and proposes algorithms for fault detection in MATLAB/Simulink. The developed model simulates the process dynamics including steam and feedwater flow regulating valves, drum-boiler, and heat rate on the regulation of pressure, drum level and production of saturated steam. The model also simulates the dynamics of superheaters for increasing the energy content of steam, and a spray section for regulating the temperature of steam upstream of the high-pressure turbine to allow for power output adjustment within a given valve operating range. Furthermore, an extension to a leak detection framework proposed by co-authors in previous work is explored. The new framework includes a modification to the threshold analysis portion of the previous work. The extended framework is then applied to a subcritical coal-fired power plant model for leak detection. In particular, this framework analyzes mismatches or deviations in expected plant dynamics with an identified transfer function model. The mismatch is flagged after it exceeds a threshold. The developed algorithm thus aids in rapid detection of faults to reduce impeded plant performance. The results of this work will support real plant operations by providing an accurate characterization of faults in the operation of coal-fired power plants.


2020 ◽  
Vol 24 (3) ◽  
pp. 104-111
Author(s):  
Alexander Kler ◽  
Pavel Zharkov ◽  
Yulia Potanina ◽  
Andrey Marinchenko ◽  
Nikolai Epishkin

AbstractThe paper investigates the effect of the carbon tax on the optimal parameters and indicators of two coal power plants: a steam turbine power unit with coal dust burning in a steam boiler and an internal gasification combined cycle power plant. Sufficiently detailed mathematical models have been developed for the considered plants that are focused on calculating the flow rates of working fluids and coolants and thermodynamic parameters at all points of the flowcharts, as well as the structural characteristics of the plant elements. The problems of optimizing the parameters of these plants related to the problems of nonlinear mathematical programming are formulated. As an efficiency criterion, the price of electricity is used at given value of the internal rate of return on investment. Optimization calculations were carried out with a carbon tax in the range from 0 $/t to 140 $/t in increments of 20 $/t. It is shown that with an increase in the charge for emissions, the optimal efficiency of the plants increases, as well as the specific investment. Specific CO2 emissions are reduced. Throughout the entire range of carbon tax values, IGCC power plant has the best economic and environmental indicators.


Author(s):  
Nela Slavu ◽  
Cristian Dinca

Abstract One of the way to reduce the greenhouses gases emissions generated by the fossil fuels combustion consists in the Carbon Capture, Transport and Storage (CCS) technologies utilization. The integration of CCS technologies in the coal fired power plants increases the cost of the energy generation. The CCS technology could be a feasible solution in the case of a high value of a CO2 certificate but for the present value an optimization of the CCS technology integration in the power plants is expected. However, for reducing the cost of the energy generated in the case of CCS integration in the power plants, a parametrical study optimization of the CO2 capture process is required. In this study, the chemical absorption process was used and the monoethanolamine with 30 wt. %. The objective of this paper is to analyze the effects of the package type used in the absorption column on the size of the equipment used and, on the energy cost of the power plant with CO2 capture process consequently. The packages types analyzed in this paper are metal Pall rings with different sizes and the rings are made of different metals: aluminum, nickel, cooper, and brass. In the case of metal Pall rings, the utilization of different material has an impact on the absorption column weight. Also, Pall rings made of plastics (polypropylene and polyethylene) were analyzed. The comparative assessment was achieved for a coal fired power plant with an installed power of 100 MW and considering the CO2 capture process efficiency of 90 %.


2018 ◽  
Vol 204 ◽  
pp. 04013 ◽  
Author(s):  
Rima Septiani Prastika ◽  
A.N. Afandi ◽  
Dwi Prihanto

Recently, electric usages are increasing every year by year in many sectors. In facts, fossil fuels have been fueled to produce electrical energy availability at many power plants which are very limited for the sustainable procurement. Developing and implementing renewable energy sources should be urgently promoted to reduce the dependence on fossil fuels that have been fueled to generate electricity for the long period throughout various power plant combinations. In expectation, the natural source of electrical energy which environmentally friendly and easy to obtain in nature is recommended to explore for the existing energy producers. The natural source of energy can be operated as an alternative power plant to reduce environmental effects and to decrease air contaminants. These works cover those opportunities. In these studies, the method used is a quantitative category with collected primary and secondary data for all evaluations and mitigations. In general, these works are also designed for identifying problems and looking for literature, data collection, processing stage, analysis phase, and final conclusion. The data used is defined in terms of temperature, air pressure, and wind speed. The collected data are supposed to the Purwoharjo City of Banyuwangi Regency, with 10 meters above ground level. Naturally, the wind speed is about 3.5 m/s to 4 m/s and the average temperature is 300° Kelvin. The potentially generated wind energy at a single point of coordinates is around 85.17 Wh.


2006 ◽  
Vol 326-328 ◽  
pp. 643-648
Author(s):  
Seung Se Baek ◽  
Il Hyun Kwon ◽  
Dong Whan Lee ◽  
Sung Mo Yang ◽  
Hyo Sun Yu

Power plant weldments are composed of various microstructures. Due to welding and PWHT processes, the microstructure of the base metal adjacent to fusion line is transformed into entirely different microstructures, collectively known as heat affected zone (HAZ). Creep, on the other hand, is considered as the most important deterioration mechanism of heat resistant components found in power plants. Therefore it is essential to evaluate creep properties of HAZ, which is considered to be very hazardous in weldment. Recently, most of the creep tests for HAZ are conducted using cross weld type specimen. However there are some problems with this type of creep test due to the results being largely varied according to the volume fraction of HAZ. In this paper, SP-Creep test, which has confirmed the availability for creep properties evaluation, has been conducted on each of the weldment microstructures. The results showed that each microstructure has a different creep behavior. The overall creep properties of HAZ are worse than those of the weld metal. Among the HAZ structures, fine grained HAZ has the worst creep properties.


2011 ◽  
Vol 110-116 ◽  
pp. 4772-4779
Author(s):  
Kumar Ashlesh ◽  
Rohit Vadera ◽  
K. Ramachandra

The use of woody biomass gasification based power plants to generate electricity is on the rise with the fast depletion of fossil fuels and ever increasing energy demands. An important sub-system of such a plant is the drier which is used to reduce the moisture content of biomass to an optimum level for trouble free and optimum performance of the gasification system. This work concerns with the design, development and implementation of a drier system which utilizes waste heat available from the power plant to dry biomass. The drier designed is simple yet effective in capturing the waste heat from the engine exhaust as well as the radiator hot air. The drier is also easy to implement in rural areas.


Author(s):  
Yoonhan Ahn ◽  
Jekyoung Lee ◽  
Seong Gu Kim ◽  
Jeong Ik Lee

The concern about the global climate change and the unstable supply of fossil fuels stimulate the research of the new energy source utilization and the efficient energy system design. As the interests on the future energy sources and renovating the conventional power plants grow, an efficient and widely applicable power conversion system is required to satisfy both requirements. S-CO2 cycle is considered as a promising candidate with the advantages of 1) relatively high efficiency in the modest temperature (450–750°C) region because of non-ideal properties near the critical point, 2) effectively reduced size of the total cycle with compact turbo-machines and heat exchangers, 3) potential for using in various applications with competitive efficiency and simple layout. The S-CO2 cycle was originally considered as an attractive candidate for the power conversion cycle of the next generation nuclear reactors. However, due to many benefits of the S-CO2 cycle, it is recently considered in other conventional and renewable energy system applications including fossil fuel power plant system, ship propulsion application, concentrated solar power system, fuel cell bottoming power cycle and so on. This paper will discuss about the design of S-CO2 cycle for the various energy system applications over different temperature range. Unlike a large size power plant which usually focuses more on maximizing the cycle efficiency, a small capacity energy system is seriously concerned about the total size of the cycle. In this manner, several preliminary S-CO2 cycle designs will be compared in terms of the efficiency and the physical size. Various layouts and components of S-CO2 cycle are compared to find the optimum cycle for each energy systems. The in-house codes developed by the KAIST research team are used to evaluate the various cycle performances and component preliminary designs. The obtained results will be compared to the conventional power conversion systems along with its implication to other existing designs.


2020 ◽  
Vol 21 (4) ◽  
pp. 302-308
Author(s):  
Irina M. Kirpichnikova

The description of the state of power engineering in Russia in the pre-revolutionary period, data on the production of electricity per capita are presented. A brief history of the creation of a commission for the development of the State Electrification Plan of Russia (GOELRO plan) and some results of its implementation are provided. The construction of the first large power plant in the South Urals, built according to the GOELRO plan, - Chelyabinsk State District Power Plant, which at that time was of great importance for the development of the region's industry and remains one of the most powerful power plants at the present time, is described. The possibilities of using renewable energy sources, in particular local hydropower resources for energy production, are disclosed. The problems of the Porozhskaya Hydropower Plant - the oldest and unique hydroelectric power plant in the Urals are designated, the characteristics of small hydropower plants in the Southern Urals are given, the prospects for using the hydropower potential of the Chelyabinsk region are revealed. The potential of solar and wind energy is discussed, the characteristics and features of solar power plants in the Urals and wind power plants with a vertical axis of rotation, developed at the South Ural State University, are specified. It is established that biomass as a resource for energy production has good prospects for use, but due to climatic conditions, this direction has not yet been developed. It is shown that small and distributed energy is still an important component in the general energy of the region and the country.


Sign in / Sign up

Export Citation Format

Share Document